|   | 
Details
   web
Records
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Search for a New B-L Z' Gauge Boson with the NA64 Experiment at CERN Type Journal Article
Year (down) 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 129 Issue Pages 161801 - 6pp
Keywords
Abstract A search for a new Z′ gauge boson associated with (un)broken B−L symmetry in the keV–GeV mass range is carried out for the first time using the missing-energy technique in the NA64 experiment at the CERN SPS. From the analysis of the data with 3.22×10^11 electrons on target collected during 2016–2021 runs, no signal events were found. This allows us to derive new constraints on the Z′−e coupling strength, which, for the mass range 0.3≲ mZ′≲ 100  MeV, are more stringent compared to those obtained from the neutrino-electron scattering data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5499
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.
Title Improved constraints on neutrino mixing from the T2K experiment with 3.13 x 10(21) protons on target Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 11 Pages 112008 - 59pp
Keywords
Abstract The T2K experiment reports updated measurements of neutrino and antineutrino oscillations using both appearance and disappearance channels. This result comes from an exposure of 14.9(16.4) x 10(20) protons on target in neutrino (antineutrino) mode. Significant improvements have been made to the neutrino interaction model and far detector reconstruction. An extensive set of simulated data studies have also been performed to quantify the effect interaction model uncertainties have on the T2K oscillation parameter sensitivity. T2K performs multiple oscillation analyses that present both frequentist and Bayesian intervals for the Pontecorvo-Maki-Nakagawa-Sakata parameters. For fits including a constraint on sin(2)theta(13) from reactor data and assuming normal mass ordering T2K measures sin(2)theta(13) = 0.53(-0.04)(+0.03) and Delta m(32)(2) = (2.45 +/- 0.07) x 10(-3) eV(2) c(-4). The Bayesian analyses show a weak preference for normal mass ordering 89)% posterior probability) and the upper sin(2)theta(13) octant (80% posterior probability), with a uniform prior probability assumed in both cases. The T2K data exclude CP conservation in neutrino oscillations at the 2 sigma level.
Address [Bravo Berguno, D.; Labarga, L.; Marti-Magro, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid 28049, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000663019200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4880
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.
Title First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single-pi(+) production channel containing at least one proton Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 11 Pages 112009 - 27pp
Keywords
Abstract This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-pi(+) production channel of neutrino interactions. We measure the differential cross sections in the muonneutrino charged-current interaction on hydrocarbon with a single pi(+) and at least one proton in the final state, at the ND280 off axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models that have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.
Address [Bravo Berguno, D.; Labarga, L.; Marti-Magro, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid 28049, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000664516000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4883
Permanent link to this record
 

 
Author Kirpichnikov, D.V.; Sieber, H.; Molina Bueno, L.; Crivelli, P.; Kirsanov, M.M.
Title Probing hidden sectors with a muon beam: Total and differential cross sections for vector boson production in muon bremsstrahlung Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 7 Pages 076012 - 13pp
Keywords
Abstract Vector bosons, such as dark photon A' or Z', can couple to muons and be produced in the bremsstrahlung reaction mu(-) + N -> mu(-) + N + A'(Z'). Their possible subsequent invisible decay can be detected in fixed target experiments through missing energy/momentum signature. In such experiments, not only is the energy transfer to A'(Z') important but also the recoil muon angle psi μ0. In this paper, we derive the total and the double differential cross sections involved in this process using the phase space Weizsacker-Williams and improved Weizsacker-Williams approximations, as well as using exact-tree-level calculations. As an example, we compare the derived cross sections and resulting signal yields in the NA64 μexperiment that uses a 160 GeV muon beam at the CERN Super Proton Synchrotron accelerator. We also discuss its impact on the NA64 μexpected sensitivity to explore the (g – 2)(mu) anomaly favored region with a Z' boson considering 10(12) muons accumulated on target.
Address [Kirpichnikov, D., V; Kirsanov, M. M.] Inst Nucl Res, Moscow 117312, Russia, Email: kirpich@ms2.inr.ac.ru;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000707478200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5008
Permanent link to this record
 

 
Author NA64 Collaboration (Cazzaniga, C. et al); Molina Bueno, L.
Title Probing the explanation of the muon (g-2) anomaly and thermal light dark matter with the semi-visible dark photon channel Type Journal Article
Year (down) 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 10 Pages 959 - 6pp
Keywords
Abstract We report the results of a search for a new vector boson (A') decaying into two dark matter particles chi 1 chi 2 of different mass. The heavier chi(2) particle subsequently decays to chi 1 and an off-shell Dark Photon A'* -> e(+)e(-). For a sufficiently largemass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in themuon anomalous magnetic moment at Fermilab. Remark- ably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained reanalyzing the previous NA64 searches for an invisible decay A' -> chi(chi) over bar and axion-like or pseudo-scalar particles -> gamma gamma. With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for A' masses from 2m(e) up to 390 MeV and mixing parameter e between 3 x 10(-5) and 2 x 10(-2).
Address [Cazzaniga, C.; Odagiu, P.; Depero, E.; Bueno, L. Molina; Crivelli, P.; Radics, B.; Rubbia, A.; Sieber, H.] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: Paolo.Crivelli@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000712961200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5013
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Search for pseudoscalar bosons decaying into e(+)e(-) pairs in the NA64 experiment at the CERN SPS Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 11 Pages L111102 - 5pp
Keywords
Abstract We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e(+) e(-) perfbnned using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e(+) e(-) pairs in the nuclear transitions of Be-8 and 4 He nuclei at the invariant mass similar or equal to 17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the “visible mode” configuration with a total statistics corresponding to 8.4 x 10(10) electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter epsilon we also used the data collected in 2016-2018 in the “invisible mode” configuration of NA64 with a total statistics corresponding to 2.84 x 10(11) EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to gamma). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space m(a) – epsilon in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of epsilon in the range 2.1 x 10(-4) < epsilon < 3.2 x 10(-4) are excluded.
Address [Hoesgen, M.; Ketzer, B.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000738796900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5071
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Improved exclusion limit for light dark matter from e(+) e(-) annihilation in NA64 Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 9 Pages L091701 - 7pp
Keywords
Abstract The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A' were set by the NA64 experiment for the mass region m(A') less than or similar to 250 MeV, by analyzing data from the interaction of 2.84 x 10(11) 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A' production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e(+) beam efforts.
Address [Andreev, Yu M.; Dermenev, A., V; Gninenko, S. N.; Karneyeu, A. E.; Kirpichnikov, D., V; Kirsanov, M. M.; Kravchuk, L., V; Krasnikov, N., V; Tlisova, I; Toropin, A. N.] Inst Nucl Res, Moscow 117312, Russia, Email: andrea.celentano@ge.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000744291500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5090
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Searching for solar KDAR with DUNE Type Journal Article
Year (down) 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 065 - 28pp
Keywords dark matter theory; neutrino detectors
Abstract The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.
Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000758221400019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5141
Permanent link to this record