|   | 
Details
   web
Records
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Search for pseudoscalar bosons decaying into e(+)e(-) pairs in the NA64 experiment at the CERN SPS Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 11 Pages L111102 - 5pp
Keywords
Abstract We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e(+) e(-) perfbnned using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e(+) e(-) pairs in the nuclear transitions of Be-8 and 4 He nuclei at the invariant mass similar or equal to 17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the “visible mode” configuration with a total statistics corresponding to 8.4 x 10(10) electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter epsilon we also used the data collected in 2016-2018 in the “invisible mode” configuration of NA64 with a total statistics corresponding to 2.84 x 10(11) EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to gamma). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space m(a) – epsilon in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of epsilon in the range 2.1 x 10(-4) < epsilon < 3.2 x 10(-4) are excluded.
Address [Hoesgen, M.; Ketzer, B.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000738796900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5071
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Improved exclusion limit for light dark matter from e(+) e(-) annihilation in NA64 Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 9 Pages L091701 - 7pp
Keywords
Abstract The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A' were set by the NA64 experiment for the mass region m(A') less than or similar to 250 MeV, by analyzing data from the interaction of 2.84 x 10(11) 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A' production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e(+) beam efforts.
Address [Andreev, Yu M.; Dermenev, A., V; Gninenko, S. N.; Karneyeu, A. E.; Kirpichnikov, D., V; Kirsanov, M. M.; Kravchuk, L., V; Krasnikov, N., V; Tlisova, I; Toropin, A. N.] Inst Nucl Res, Moscow 117312, Russia, Email: andrea.celentano@ge.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000744291500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5090
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M.
Title First constraints on the Lμ – Lτ explanation of the muon g-2 anomaly from NA64-e at CERN Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 212 - 15pp
Keywords Beyond Standard Model; Fixed Target Experiments; Dark Matter
Abstract The inclusion of an additional U(1) gauge L-mu – L-tau symmetry would release the tension between the measured and the predicted value of the anomalous muon magnetic moment: this paradigm assumes the existence of a new, light Z ' vector boson, with dominant coupling to μand tau leptons and interacting with electrons via a loop mechanism. The L-mu – L-tau model can also explain the Dark Matter relic abundance, by assuming that the Z ' boson acts as a “portal” to a new Dark Sector of particles in Nature, not charged under known interactions. In this work we present the results of the Z ' search performed by the NA64-e experiment at CERN SPS, that collected similar to 9 x 10(11) 100 GeV electrons impinging on an active thick target. Despite the suppressed Z ' production yield with an electron beam, NA64-e provides the first accelerator-based results excluding the g – 2 preferred band of the Z ' parameter space in the 1 keV < m(Z ') less than or similar to 2 MeV range, in complementarity with the limits recently obtained by the NA64-mu experiment with a muon beam.
Address [Antonov, A.; Bisio, P.; Celentano, A.; Marini, A.; Marsicano, L.] INFN Sez Genova, I-16147 Genoa, Italy, Email: luca.marsicano@ge.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001276265700010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6218
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M.
Title Probing light dark matter with positron beams at NA64 Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 3 Pages L031103 - 6pp
Keywords
Abstract We present the results of a missing-energy search for light dark matter which has a new interaction with ordinary matter transmitted by a vector boson, called dark photon A'. For the first time, this search is performed with a positron beam by using the significantly enhanced production of A' in the resonant annihilation of positrons with atomic electrons of the target nuclei, followed by the invisible decay of A' into dark matter. No events were found in the signal region with (10.1 +/- 0.1) x 109 positrons on target with 100 GeV energy. This allowed us to set new exclusion limits that, relative to the collected statistics, prove the power of this experimental technique. This measurement is a crucial first step toward a future exploration program with positron beams, whose estimated sensitivity is here presented.
Address [Andreev, Yu. M.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Frolov, V. N.; Kachanov, V. A.; Karneyeu, A. E.; Kirpichnikov, D. V.; Kirsanov, M. M.; Kolosov, V. N.; Gertsenberger, S. V.; Kasianova, E. A.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Lysan, V.; Matveev, V. A.; Samoylenko, V. D.; Shchukin, D.; Tikhomirov, V. O.; Tlisova, I.; Toropin, A. N.; Volkov, P. V.; Volkov, V. Yu.; Voronchikhin, I. V.; Zhevlakov, A. S.] CERN, Meyrin, Switzerland, Email: pietro.bisio@ge.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001180160500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6009
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M.
Title Shedding light on dark sectors with high-energy muons at the NA64 experiment at the CERN SPS Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 110 Issue 11 Pages 112015 - 23pp
Keywords
Abstract A search for dark sectors is performed using the unique M2 beam line at the CERN Super Proton Synchrotron. New particles (X) could be produced in the bremsstrahlung-like reaction of high-energy 160 GeV positively charged muons impinging on an active target, μN -> μNX, followed by their decays, X -> invisible. The experimental signature would be a scattered single muon from the target, with about less than half of its initial energy and no activity in the subdetectors located downstream from the interaction point. The full sample of the 2022 run is analyzed through the missing-energy/momentum channel, with total statistics of (1.98 +/- 0.02) x 10(10) muons on target. We demonstrate that various muonphilic scenarios involving different types of mediators, such as scalar or vector particles, can be probed simultaneously with such a technique. For the vector case, besides a L-mu – L-tau Z' vector boson, we also consider an invisibly decaying dark photon (A' -> invisible). This search is complementary to NA64 running with electrons and positrons, thus opening the possibility to expand the exploration of the thermal light dark matter parameter space by combining the results obtained with the three beams.
Address [Andreev, Yu. M.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Frolov, V. N.; Gertsenberger, S. V.; Gninenko, S. N.; Kachanov, V. A.; Kambar, Y.; Karneyeu, A. E.; Kasianova, E. A.; Kekelidze, G.; Kirpichnikov, D. V.; Kirsanov, M. M.; Kolosov, V. N.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Peshekhonov, D. V.; Polyakov, V. A.; Salamatin, K. M.; Samoylenko, V. D.; Shchukin, D. A.; Tikhomirov, V. O.; Tlisova, I. V.; Toropin, A. N.; Volkov, P. V.; Volkov, V. Yu.; Voronchikhin, I. V.; Zhevlakov, A. S.] CERN, Geneva, Switzerland, Email: henri.hugo.sieber@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001399987700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6465
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M.
Title First Results in the Search for Dark Sectors at NA64 with the CERN SPS High Energy Muon Beam Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 21 Pages 211803 - 7pp
Keywords
Abstract We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum < 80 GeV/c in the final state, accompanied by missing energy, i.e., no detectable activity in the downstream calorimeters. For a total dataset of (1.98 +/- 0.02) x 10(10) muons on target, no event is observed in the expected signal region. This allows us to set new limits on the remaining (m(Z)'; g(Z)') parameter space of a new Z' (L-mu – L-tau) vector boson which could explain the muon (g – 2)(mu) anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal dark matter relic abundance. Our results pave the way to explore dark sectors and light dark matter with muon beams in a unique and complementary way to other experiments.
Address [Banerjee, D.; Bernhard, J.; Charitonidis, N.; Girod, S.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: paolo.crivelli@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001239696000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6142
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M.
Title Dark-Sector Search via Pion-Produced η and η' Mesons Decaying Invisibly in the NA64h Detector Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 133 Issue 12 Pages 121803 - 6pp
Keywords
Abstract We present the first results from a proof-of-concept search for dark sectors via invisible decays of pseudoscalar eta and eta ' mesons in the NA64h experiment at the CERN SPS. Our novel technique uses the charge-exchange reaction of 50 GeV pi- on nuclei of an active target as the source of neutral mesons. The eta,eta'-> invisible events would exhibit themselves via a striking signature-the complete disappearance of the incoming beam energy in the detector. No evidence for such events has been found with 2.9x109 pions on target accumulated during one day of data taking. This allows us to set a stringent limit on the branching ratio Br(eta'-> invisible) < 2.1 x 10(-4) improving the current bound by a factor of similar or equal to 3. We also set a limit on Br(eta -> invisible) < 1.1 x 10(-4) comparable with the existing one. These results demonstrate the great potential of our approach and provide clear guidance on how to enhance and extend the sensitivity for dark sector physics from future searches for invisible neutral meson decays.
Address [Antonov, A.; Bisio, P.; Celentano, A.; Marini, A.; Marsicano, L.] INFN, Sez Genova, I-16147 Genoa, Italy, Email: paolo.crivelli@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001321201700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6291
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M.
Title Search for Light Dark Matter with NA64 at CERN Type Journal Article
Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 131 Issue 16 Pages 161801 - 7pp
Keywords
Abstract Thermal dark matter models with particle chi masses below the electroweak scale can provide an explanation for the observed relic dark matter density. This would imply the existence of a new feeble interaction between the dark and ordinary matter. We report on a new search for the sub-GeV chi production through the interaction mediated by a new vector boson, called the dark photon A ' , in collisions of 100 GeV electrons with the active target of the NA64 experiment at the CERN SPS. With 9.37 x 10(11) electrons on target collected during 2016-2022 runs NA64 probes for the first time the well-motivated region of parameter space of benchmark thermal scalar and fermionic dark matter models. No evidence for dark matter production has been found. This allows us to set the most sensitive limits on the A ' couplings to photons for masses m(A ') less than or similar to 0.35 GeV, and to exclude scalar and Majorana dark matter with the chi – A ' coupling alpha(D) <= 0.1 for masses 0.001 less than or similar to m(chi) less than or similar to 0.1 GeV and 3m(chi) <= m(A ').
Address [Andreev, Yu. M.; Chumakov, A. G.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Frolov, V. N.; Gertsenberger, S. V.; Gninenko, S. N.; Kachanov, V. A.; Karneyeu, A. E.; Kasianova, E. A.; Kekelidze, G. D.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Peshekhonov, D., V; Polyakov, V. A.; Salamatin, K. M.; Samoylenko, V. D.; Shchukin, D. A.; Tikhomirov, V. O.; Tlisova, I.; Toropin, A. N.; Vasilishin, B. I.; Volkov, P. V.; Volkov, V. Yu.; Voronchikhin, I. V.; Zhevlakov, A. S.] CERN, Geneva, Switzerland, Email: sergei.gninenko@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001098606400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5805
Permanent link to this record
 

 
Author (up) NA64 Collaboration (Cazzaniga, C. et al); Molina Bueno, L.
Title Probing the explanation of the muon (g-2) anomaly and thermal light dark matter with the semi-visible dark photon channel Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 10 Pages 959 - 6pp
Keywords
Abstract We report the results of a search for a new vector boson (A') decaying into two dark matter particles chi 1 chi 2 of different mass. The heavier chi(2) particle subsequently decays to chi 1 and an off-shell Dark Photon A'* -> e(+)e(-). For a sufficiently largemass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in themuon anomalous magnetic moment at Fermilab. Remark- ably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained reanalyzing the previous NA64 searches for an invisible decay A' -> chi(chi) over bar and axion-like or pseudo-scalar particles -> gamma gamma. With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for A' masses from 2m(e) up to 390 MeV and mixing parameter e between 3 x 10(-5) and 2 x 10(-2).
Address [Cazzaniga, C.; Odagiu, P.; Depero, E.; Bueno, L. Molina; Crivelli, P.; Radics, B.; Rubbia, A.; Sieber, H.] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: Paolo.Crivelli@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000712961200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5013
Permanent link to this record
 

 
Author (up) Ponten, A.; Sieber, H.; Banto Oberhauser, B.; Crivelli, P.; Kirpichnikov, D.; Gninenko, S.N.; Hösgen, M.; Molina Bueno, L.; Mongillo, M.; Zhevlakov, A.
Title Probing hidden leptonic scalar portals using the NA64 experiment at CERN Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 10 Pages 1035 - 11pp
Keywords
Abstract In this study, we demonstrate the potential of the NA64 experiment at CERN SPS to search for New Physics processes involving e→μ transitions after the collision of 100 GeV electrons with target nuclei. A new Dark Sector leptonic portal in which a scalar boson φ could be produced in the lepton-flavor-changing bremsstrahlung-like reaction, eN→μNφ, is used as benchmark process. In this work, we develop a realistic Monte Carlo simulation of the NA64 experimental setup implementing the differential and total production cross-section computed at exact tree-level and applying the Weiszäcker-Williams phase space approximation. Using this framework, we investigate the main background sources and calculate the expected sensitivity of the experiment. The results indicate that with minor setup optimization, NA64 can probe a large fraction of the available parameter space compatible with the muon g−2 anomaly and the Dark Matter relic predictions in the context of a new Dark Sector leptonic portal with 1011 EOT. This result paves the way to the exploration of lepton-flavour-changing transitions in NA64.
Address [Ponten, A.] Uppsala Univ, Dept Phys & Astron, High Energy Phys, Angstromlab, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden, Email: henri.hugo.sieber@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001329377000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6285
Permanent link to this record