Records |
Author |
Gariazzo, S.; Mena, O.; Ramirez, H.; Boubekeur, L. |
Title |
Primordial power spectrum features in phenomenological descriptions of inflation |
Type |
Journal Article |
Year |
2017 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
17 |
Issue |
|
Pages |
38-45 |
Keywords |
Inflation; Primordial power spectrum; Sound speed |
Abstract |
We extend an alternative, phenomenological approach to inflation by means of an equation of state and a sound speed, both of them functions of the number of e-folds and four phenomenological parameters. This approach captures a number of possible inflationary models, including those with non-canonical kinetic terms or scale-dependent non-gaussianities. We perform Markov Chain Monte Carlo analyses using the latest cosmological publicly available measurements, which include Cosmic Microwave Background (CMB) data from the Planck satellite. Within this parameterization, we discard scale invariance with a significance of about 10 sigma, and the running of the spectral index is constrained as alpha(s) = -0.60(-0.10)(+0.08) x 10(-3) (68% CL errors). The limit on the tensor-to-scalar ratio is r < 0.005 at 95% CL from CMB data alone. We find no significant evidence for this alternative parameterization with present cosmological observations. The maximum amplitude of the equilateral non-gaussianity that we obtain, vertical bar f(NL)(equil)vertical bar < 1, is much smaller than the current Planck mission errors, strengthening the case for future high-redshift, all-sky surveys, which could reach the required accuracy on equilateral non-gaussianities. |
Address |
[Gariazzo, Stefano] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy, Email: omena@ific.uv.es |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2212-6864 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000411869100006 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3319 |
Permanent link to this record |
|
|
|
Author |
Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. |
Title |
Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions |
Type |
Journal Article |
Year |
2020 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
30 |
Issue |
|
Pages |
100666 - 12pp |
Keywords |
Hubble tension; Cosmological parameters; Dark matter; Dark energy; Interacting dark energy |
Abstract |
We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions. |
Address |
[Di Valentino, Eleonora] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2212-6864 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000595300400037 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4646 |
Permanent link to this record |
|
|
|
Author |
Yang, W.Q.; Di Valentino, E.; Pan, S.; Mena, O. |
Title |
Emergent Dark Energy, neutrinos and cosmological tensions |
Type |
Journal Article |
Year |
2021 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
31 |
Issue |
|
Pages |
100762 - 9pp |
Keywords |
|
Abstract |
The Phenomenologically Emergent Dark Energy model, a dark energy model with the same number of free parameters as the flat Lambda CDM, has been proposed as a working example of a minimal model which can avoid the current cosmological tensions. A straightforward question is whether or not the inclusion of massive neutrinos and extra relativistic species may spoil such an appealing phenomenological alternative. We present the bounds on M-nu and N-eff and comment on the long standing H-0 and sigma(8) tensions within this cosmological framework with a wealth of cosmological observations. Interestingly, we find, at 95% confidence level, and with the most complete set of cosmological observations, M-nu similar to 0.21(-0.14)(+0.15) eV and N-eff = 3.03 +/- 0.32 i.e. an indication for a non-zero neutrino mass with a significance above 2 sigma. The well known Hubble constant tension is considerably easened, with a significance always below the 2 sigma level. (C) 2020 Elsevier B.V. All rights reserved. |
Address |
[Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2212-6864 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000630235100022 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4752 |
Permanent link to this record |
|
|
|
Author |
Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. |
Title |
The galaxy power spectrum take on spatial curvature and cosmic concordance |
Type |
Journal Article |
Year |
2021 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
33 |
Issue |
|
Pages |
100851 - 17pp |
Keywords |
Cosmological parameters; Spatial curvature; Cosmological tensions |
Abstract |
The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology. |
Address |
[Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000704383100022 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4984 |
Permanent link to this record |
|
|
|
Author |
Gariazzo, S.; Mena, O.; Schwetz, T. |
Title |
Quantifying the tension between cosmological and terrestrial constraints on neutrino masses |
Type |
Journal Article |
Year |
2023 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
40 |
Issue |
|
Pages |
101226 - 8pp |
Keywords |
Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses |
Abstract |
The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations. |
Address |
[Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001042929800001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5623 |
Permanent link to this record |
|
|
|
Author |
Gerbino, M. et al; Martinez-Mirave, P.; Mena, O.; Tortola, M.; Valle, J.W. . |
Title |
Synergy between cosmological and laboratory searches in neutrino physics |
Type |
Journal Article |
Year |
2023 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
42 |
Issue |
|
Pages |
101333 - 36pp |
Keywords |
Neutrinos; Cosmology; Neutrino phenomenology |
Abstract |
The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories. |
Address |
[Gerbino, Martina; Lattanzi, Massimiliano; Brinckmann, Thejs] INFN, Sez Ferrara, I-44122 Ferrara, Italy, Email: gerbinom@fe.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001112368600001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5854 |
Permanent link to this record |
|
|
|
Author |
Ghedini, P.; Hajjar, R.; Mena, O. |
Title |
Redshift-space distortions corner interacting dark energy |
Type |
Journal Article |
Year |
2024 |
Publication  |
Physics of the Dark Universe |
Abbreviated Journal |
Phys. Dark Universe |
Volume |
46 |
Issue |
|
Pages |
101671 - 10pp |
Keywords |
Dark energy; Dark matter; Dark sector interactions; Dark energy properties |
Abstract |
Despite the fact that the Lambda CDM model has been highly successful over the last few decades in providing an accurate fit to a broad range of cosmological and astrophysical observations, different intriguing tensions and anomalies emerged at various statistical levels. Given the fact that the dark energy and the dark matter sectors remain unexplored, the answer to some of the tensions may rely on modifications of these two dark sectors. This manuscript explores the important role of the growth of structure in constraining non-standard cosmologies. In particular, we focus on the interacting dark energy (IDE) scenario, where dark matter and dark energy interact non-gravitationally. We aim to place constraints on the phenomenological parameters of these alternative models, by considering different datasets related to a number of cosmological measurements, to achieve a complementary analysis. A special emphasis is devoted to redshift-space distortion measurements (RSD), whose role in constraining beyond the standard paradigm models has not been recently highlighted. These observations indeed have a strong constraining power, rendering all parameters to their Lambda CDM canonical values, and therefore leaving little room for the IDE models explored here. |
Address |
[Ghedini, Pietro] Univ Bologna, Dipartimento Fis & Astron, Via Irnerio 46, I-40126 Bologna, Italy, Email: pietro.ghedini3@studio.unibo.it; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001333958300001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6298 |
Permanent link to this record |
|
|
|
Author |
Das, C.R.; Mena, O.; Palomares-Ruiz, S.; Pascoli, S. |
Title |
Determining the dark matter mass with DeepCore |
Type |
Journal Article |
Year |
2013 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
725 |
Issue |
4-5 |
Pages |
297-301 |
Keywords |
Dark matter; Neutrino telescopes |
Abstract |
Cosmological and astrophysical observations provide increasing evidence of the existence of dark matter in our Universe. Dark matter particles with a mass above a few GeV can be captured by the Sun, accumulate in the core, annihilate, and produce high energy neutrinos either directly or by subsequent decays of Standard Model particles. We investigate the prospects for indirect dark matter detection in the IceCube/DeepCore neutrino telescope and its capabilities to determine the dark matter mass. |
Address |
[Das, Chitta R.; Palomares-Ruiz, Sergio] Univ Ten Lisboa, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal, Email: sergio.palomares.ruiz@ist.utl.pt |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000324223100015 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
1589 |
Permanent link to this record |
|
|
|
Author |
Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Mena, O.; Melchiorri, A.; Silk, J. |
Title |
Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data |
Type |
Journal Article |
Year |
2016 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
752 |
Issue |
|
Pages |
182-185 |
Keywords |
|
Abstract |
Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterized via N-eff. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measurements. In the mixed hot dark matter scenario explored here, we find the tightest and more robust constraint to date on the sum of the three active neutrino masses, Sigma m nu < 0.136eV at 95% CL, as it is obtained in the very well-known linear perturbation regime. The Planck Sunyaev-Zeldovich cluster number count data further tightens this bound, providing a 95% CL upper limit of Sigma m nu < 0.126 eV in this very same mixed hot dark matter model, a value which is very close to the expectations in the inverted hierarchical neutrino mass scenario. Using this same combination of data sets we find the most stringent bound to date on the thermal axion mass, m(a) < 0.529 eV at 95% CL. |
Address |
[Di Valentino, Eleonora; Silk, Joseph] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France, Email: elena.giusarma@roma1.infn.it |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000368026000026 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
2524 |
Permanent link to this record |
|
|
|
Author |
Gerbino, M.; Lattanzi, M.; Mena, O.; Freese, K. |
Title |
A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling |
Type |
Journal Article |
Year |
2017 |
Publication  |
Physics Letters B |
Abbreviated Journal |
Phys. Lett. B |
Volume |
775 |
Issue |
|
Pages |
239-250 |
Keywords |
|
Abstract |
We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass M-nu and on the mass fractions f(nu),i = m(i)/M-nu (where the index i = 1, 2, 3 indicates the three mass eigenstates) carried by each of the mass eigenstates m(i), after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameter h(type), which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyper-parameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical significance if the mass is very close to the minimal value allowed by oscillation experiments, as for NH and a fiducial value of M-nu = 0.06 eV there is a 9 : 1 preference of normal versus inverted hierarchy. On the contrary, if the sum of the masses is of the order of 0.1 eV or larger, even future cosmological observations will be inconclusive. The innovative statistical strategy exploited here represents a very simple, efficient and robust tool to study the sensitivity of present and future cosmological data to the neutrino mass hierarchy, and a sound competitor to the standard Bayesian model comparison. The unbiased limit on M-nu we obtain is crucial for ongoing and planned neutrinoless double beta decay searches. |
Address |
[Gerbino, Martina; Freese, Katherine] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden, Email: martina.gerbino@fysik.su.se; |
Corporate Author |
|
Thesis |
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0370-2693 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000417190700033 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3435 |
Permanent link to this record |