Records |
Author |
DUNE Collaboration (Abud, A.A. et al); Amar Es-Sghir, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. |
Title |
First measurement of the total inelastic cross section of positively charged kaons on argon at energies between 5.0 and 7.5 GeV |
Type |
Journal Article |
Year |
2024 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
110 |
Issue |
9 |
Pages |
092011 - 22pp |
Keywords  |
|
Abstract |
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/c beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380 +/- 26 mbarns for the 6 GeV/c setting and 379 +/- 35 mbarns for the 7 GeV/c setting. |
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001381776600003 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6443 |
Permanent link to this record |
|
|
|
Author |
Wang, D.; Mena, O.; Di Valentino, E.; Gariazzo, S. |
Title |
Updating neutrino mass constraints with background measurements |
Type |
Journal Article |
Year |
2024 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
110 |
Issue |
10 |
Pages |
103536 - 8pp |
Keywords  |
|
Abstract |
Low-redshift probes, such as baryon acoustic oscillations (BAO) and supernovae Ia luminosity distances, have been shown to be crucial for improving the bounds on the total neutrino mass from cosmological observations, due to their ability to break degeneracies among the different parameters. Here, we expand background observations to include H(z) measurements from cosmic chronometers, distance moduli from gamma ray bursts (GRBs), and angular diameter distances from galaxy clusters. For the first time, using the physically motivated assumption of positive neutrino mass, we find that neutrino mass limits could be at 95% CL below the minimal expectations from neutrino oscillation probes, suggesting possible nonstandard neutrino and/or cosmological scenarios. Interestingly, it is not only the combination of the three background probes that is responsible for the Sigma m(v) <0.06 eV limits, but also each of them independently. The tightest bound we find here is Sigma m(v) <0.043 eV at 95% CL after combining cosmic microwave background Planck data with DESI BAO, supernovae Ia, GRBs, cosmic chronometers, and galaxy clusters, showing a clear tension between neutrino oscillation results and cosmological analyses. In general, removing each one of three background probes still provides a limit Sigma m(v) less than or similar to 0.06 eV, reassuring the enormous potential of these low-redshift observations in constraining the neutrino mass. |
Address |
[Wang, Deng; Mena, Olga] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46980 Paterna, Spain, Email: dengwang@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:001419621700005 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6519 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Amar Es-Sghir, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. |
Title |
Performance of a modular ton-scale pixel-readout liquid argon time projection chamber |
Type |
Journal Article |
Year |
2024 |
Publication |
Instruments |
Abbreviated Journal |
Instruments |
Volume |
8 |
Issue |
|
Pages |
41 - 45pp |
Keywords  |
|
Abstract |
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2410-390X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
6587 |
Permanent link to this record |
|
|
|
Author |
Gariazzo, S.; Di Valentino, E.; Mena, O.; Nunes, R.C. |
Title |
Late-time interacting cosmologies and the Hubble constant tension |
Type |
Journal Article |
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
Volume |
106 |
Issue |
2 |
Pages |
023530 - 12pp |
Keywords  |
?CDM scenario; cosmic microwave background (CMB) |
Abstract |
In this manuscript we reassess the potential of interacting dark matter-dark energy models in solving the Hubble constant tension. These models have been proposed but also questioned as possible solutions to the H0 problem. Here we examine several interacting scenarios against cosmological observations, focusing on the important role played by the calibration of supernovae data. In order to reassess the ability of interacting dark matter-dark energy scenarios in easing the Hubble constant tension, we systematically confront their theoretical predictions using a prior on the supernovae Ia absolute magnitude MB, which has been argued to be more robust and certainly less controversial than using a prior on the Hubble constant H0. While some data combinations do not show any preference for interacting dark sectors and in some of these scenarios the clustering sigma 8 tension worsens, interacting cosmologies with a dark energy equation of state w < -1 are preferred over the canonical lambda CDM picture even with cosmic microwave background data alone and also provide values of sigma 8 in perfect agreement with those from weak lensing surveys. Future cosmological surveys will test these exotic dark energy cosmologies by accurately measuring the dark energy equation of state and its putative redshift evolution. |
Address |
[Gariazzo, Stefano] Ist Nazl Fis Nucleare INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000843205100006 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5346 |
Permanent link to this record |
|
|
|
Author |
Mena, O.; Razzaque, S. |
Title |
Hints of an axion-like particle mixing in the GeV gamma-ray blazar data? |
Type |
Journal Article |
Year |
2013 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
11 |
Issue |
11 |
Pages |
023 - 12pp |
Keywords  |
axions; active galactic nuclei |
Abstract |
Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of this blazar. Using theoretically motivated models for the magnetic field and particle density con figurations in the kiloparsec scale jet, outside the broad-line region, we find an ALP mass m(a) similar to (1 – 3).10(-7) eV and coupling g(a gamma) similar to (1 – 3).10(-10) GeV-1 after performing an illustrative statistical analysis of spectral data in four different epochs of emission. The precise values of m(a) and g(a gamma) depend weakly on the assumed particle density con figuration and are consistent with the current experimental bounds on these quantities. We apply this method and ALP parameters found from fitting 3C454.3 data to another flat-spectrum radio quasar PKS1222+216 (4C+21.35) data up to 400 GeV, as a consistency check, and found good fit. We find that the ALP-photon mixing effect on the GeV spectra may not be washed out for any reasonable estimate of the magnetic field in the intergalactic media. |
Address |
[Mena, Olga] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es; |
Corporate Author |
|
Thesis |
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000327843900024 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
1673 |
Permanent link to this record |
|
|
|
Author |
D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. |
Title |
Cosmological bound on the QCD axion mass, redux |
Type |
Journal Article |
Year |
2022 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
09 |
Issue |
9 |
Pages |
022 - 35pp |
Keywords  |
axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology |
Abstract |
We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV. |
Address |
[D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000863296000010 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5383 |
Permanent link to this record |
|
|
|
Author |
Mena, O.; Razzaque, S.; Villaescusa-Navarro, F. |
Title |
Signatures of photon and axion-like particle mixing in the gamma-ray burst jet |
Type |
Journal Article |
Year |
2011 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
02 |
Issue |
2 |
Pages |
030 - 16pp |
Keywords  |
axions; magnetic fields; gamma ray bursts theory; gamma ray burst experiments |
Abstract |
Photons couple to Axion-Like Particles (ALPs) or more generally to any pseudo Nambu-Goldstone boson in the presence of an external electromagnetic field. Mixing between photons and ALPs in the strong magnetic field of a Gamma-Ray Burst (GRB) jet during the prompt emission phase can leave observable imprints on the gamma-ray polarization and spectrum. Mixing in the intergalactic medium is not expected to modify these signatures for ALP mass > 10(-14) eV and/or for < nG magnetic field. We show that the depletion of photons due to conversion to ALPs changes the linear degree of polarization from the values predicted by the synchrotron model of gamma ray emission. We also show that when the magnetic field orientation in the propagation region is perpendicular to the field orientation in the production region, the observed synchrotron spectrum becomes steeper than the theoretical prediction and as detected in a sizable fraction of GRB sample. Detection of the correlated polarization and spectral signatures from these steep-spectrum GRBs by gamma-ray polarimeters can be a very powerful probe to discover ALPs. Measurement of gamma-ray polarization from GRBs in general, with high statistics, can also be useful to search for ALPs. |
Address |
[Mena, Olga; Villaescusa-Navarro, F.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es |
Corporate Author |
|
Thesis |
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
ISI:000287859800031 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
559 |
Permanent link to this record |
|
|
|
Author |
Yang, W.Q.; Pan, S.; Di Valentino, E.; Mena, O.; Melchiorri, A. |
Title |
2021-H-0 odyssey: closed, phantom and interacting dark energy cosmologies |
Type |
Journal Article |
Year |
2021 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
10 |
Issue |
10 |
Pages |
008 - 21pp |
Keywords  |
baryon acoustic oscillations; cosmological parameters from CMBR; cosmological perturbation theory; dark energy theory |
Abstract |
Up-to-date cosmological data analyses have shown that (sigma) a closed universe is preferred by the Planck data at more than 99% CL, and (b) interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the H-0 problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations. |
Address |
[Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com; |
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000711524000011 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5012 |
Permanent link to this record |
|
|
|
Author |
Gariazzo, S.; Gerbino, M.; Brinckmann, T.; Lattanzi, M.; Mena, O.; Schwetz, T.; Choudhury, S.R.; Freese, K.; Hannestad, S.; Ternes, C.A.; Tortola, M. |
Title |
Neutrino mass and mass ordering: no conclusive evidence for normal ordering |
Type |
Journal Article |
Year |
2022 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
Volume |
10 |
Issue |
10 |
Pages |
010 - 18pp |
Keywords  |
Bayesian reasoning; neutrino properties; neutrino masses from cosmology; cosmological parameters from CMBR |
Abstract |
The extraction of the neutrino mass ordering is one of the major challenges in particle physics and cosmology, not only for its implications for a fundamental theory of mass generation in nature, but also for its decisive role in the scale of future neutrinoless double beta decay experimental searches. It has been recently claimed that current oscillation, beta decay and cosmological limits on the different observables describing the neutrino mass parameter space provide robust decisive Bayesian evidence in favor of the normal ordering of the neutrino mass spectrum [1]. We further investigate these strong claims using a rich and wide phenomenology, with different sampling techniques of the neutrino parameter space. Contrary to the findings of Jimenez et al. [1], no decisive evidence for the normal mass ordering is found. Neutrino mass ordering analyses must rely on priors and parameterizations that are ordering-agnostic: robust results should be regarded as those in which the preference for the normal neutrino mass ordering is driven exclusively by the data, while we find a difference of up to a factor of 33 in the Bayes factors among the different priors and parameterizations exploited here. An ordering-agnostic prior would be represented by the case of parameterizations sampling over the two mass splittings and a mass scale, or those sampling over the individual neutrino masses via normal prior distributions only. In this regard, we show that the current significance in favor of the normal mass ordering should be taken as 2.7 sigma (i.e. moderate evidence), mostly driven by neutrino oscillation data. Let us stress that, while current data favor NO only mildly, we do not exclude the possibility that this may change in the future. Eventually, upcoming oscillation and cosmological data may (or may not) lead to a more significant exclusion of IO. |
Address |
[Gariazzo, Stefano; Ternes, Christoph A.] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it; |
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000928487200002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5477 |
Permanent link to this record |
|
|
|
Author |
de Salas, P.F.; Forero, D.V.; Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
2020 global reassessment of the neutrino oscillation picture |
Type |
Journal Article |
Year |
2021 |
Publication |
Journal of High Energy Physics |
Abbreviated Journal |
J. High Energy Phys. |
Volume |
02 |
Issue |
2 |
Pages |
071 - 36pp |
Keywords  |
Beyond Standard Model; Neutrino Physics |
Abstract |
We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NO nu A measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of theta (13), theta (12), Delta m212 and Delta m312. The best fit value for the atmospheric angle theta (23) lies in the second octant, but first octant solutions remain allowed at similar to 2.4 sigma. Regarding CP violation measurements, the preferred value of delta we obtain is 1.08 pi (1.58 pi) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5 sigma statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00 sigma. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68 sigma within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70 sigma. This very same cosmological data set provides 2 sigma upper limits on the total neutrino mass corresponding to Sigma m(nu)< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs. |
Address |
[de Salas, P. F.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1029-8479 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000618343000003 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4727 |
Permanent link to this record |