|   | 
Details
   web
Records
Author Yang, W.Q.; Mena, O.; Pan, S.; Di Valentino, E.
Title Dark sectors with dynamical coupling Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 8 Pages 083509 - 11pp
Keywords (up)
Abstract Coupled dark matter-dark energy scenarios arc modeled via a dimensionless parameter xi, which controls the strength of their interaction. While this coupling is commonly assumed to be constant, there is no underlying physical law or symmetry that forbids a time-dependent xi parameter. The most general and complete interacting scenarios between the two dark sectors should therefore allow for such a possibility, and it is the main purpose of this study to constrain two possible and well-motivated coupled cosmologies by means of the most recent and accurate early- and late-time universe observations. We find that CMB data alone prefer xi(z) > 0 and therefore a smaller amount of dark matter, alleviating some crucial and well-known cosmological data tensions. An objective assessment of the Bayesian evidence for the coupled models explored here shows no particular preference for the presence of a dynamical dark sector coupling.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489039100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4166
Permanent link to this record
 

 
Author Ternes, C.A.; Gariazzo, S.; Hajjar, R.; Mena, O.; Sorel, M.; Tortola, M.
Title Neutrino mass ordering at DUNE: An extra nu bonus Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 9 Pages 093004 - 10pp
Keywords (up)
Abstract We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being operational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti) neutrinos travel, provide ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through Earth. Crucially, muon capture by argon provides excellent charge tagging, allowing us to disentangle the neutrino and antineutrino signature. This is an important extra benefit of having a liquid argon time projection chamber as a far detector, that could render an similar to 3.5 sigma extraction of the mass ordering after approximately 7 yr of exposure.
Address [Ternes, Christoph A.; Gariazzo, Stefano; Hajjar, Rasmi; Mena, Olga; Sorel, Michel; Tortola, Mariam] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: chternes@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000498060600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4205
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title Nonminimal dark sector physics and cosmological tensions Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 6 Pages 063502 - 20pp
Keywords (up)
Abstract We explore whether nonstandard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are (a) an interaction between the dark matter and dark energy components and (b) a dark energy equation of state w different from that of the canonical cosmological constant w = -1. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. Moreover, a clear degeneracy exists between these two parameters in the case of cosmic microwave background (CMB) data. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder H-0 measurements of Riess et al. (R19), as well as recent baryon acoustic oscillation (BAO) and type Ia supernovae (SNeIa) distance data. We find that in quintessence coupled dark energy models, where w > -1, the evidence for a nonzero coupling between the two dark sectors can surpass the 5 sigma significance. Moreover, for both Planck + BAO or Planck + SNeIa, we find a preference for w > -1 at about three standard deviations. Quintessence models are, therefore, in excellent agreement with current data when an interaction is considered. On the other hand, in phantom coupled dark energy models, there is no such preference for a nonzero dark sector coupling. All the models we consider significantly raise the value of the Hubble constant, easing the H-0 tension. In the interacting scenario, the disagreement between Planck thorn BAO and R19 is considerably reduced from 4.3 sigma in the case of the Lambda cold dark matter (Lambda CDM) model to about 2.5 sigma. The addition of low-redshift BAO and SNeIa measurements leaves, therefore, some residual tension with R19 but at a level that could be justified by a statistical fluctuation. Bayesian evidence considerations mildly disfavor both the coupled quintessence and phantom models, while mildly favoring a coupled vacuum scenario, even when late-time datasets are considered. We conclude that nonminimal dark energy cosmologies, such as coupled quintessence, phantom, or vacuum models, are still an interesting route toward softening existing cosmological tensions, even when low-redshift datasets and Bayesian evidence considerations are taken into account.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000517964500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4309
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Mena, O.; Pan, S.; Nunes, R.C.
Title All-inclusive interacting dark sector cosmologies Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 8 Pages 083509 - 15pp
Keywords (up)
Abstract In this paper we explore possible extensions of interacting dark energy cosmologies, where dark energy and dark matter interact nongravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrino masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should therefore be regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutrino mass g, < 0.15 eV and a number of effective relativistic degrees of freedom N-eff = 3.03(-0.33)(+0.33), both at 95% C.L., which are close to those obtained within the ACDM cosmology, M-v < 0.12 eV and N-eff = (+0.36)(-0.35), for the same data combination.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000523633500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4359
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Mena, O.; Miralda-Escude, J.
Title Maximum amplitude of the high-redshift 21-cm absorption feature Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 8 Pages 083502 - 8pp
Keywords (up)
Abstract We examine the maximum possible strength of the global 21-cm absorption dip on the cosmic background radiation at high-redshift caused by the atomic intergalactic medium, when the Lyman-alpha coupling is maximum, assuming no exotic cooling mechanisms from interactions with dark matter. This maximum absorption is limited by three inevitable factors that need to be accounted for: (a) heating by energy transferred from the cosmic background radiation to the hydrogen atoms via 21-cm transitions, dubbed as 21-cm heating; (b) Ly alpha heating by scatterings of Ly alpha photons from the first stars; (c) the impact of the expected density fluctuations in the intergalactic gas in standard cold dark matter theory, which reduces the mean 21-cm absorption signal. Inclusion of this third novel effect reduces the maximum global 21-cm absorption by similar to 10%. Overall, the three effects studied here reduce the 21-cm global absorption by similar to 20% at z similar or equal to 17.
Address [Villanueva-Domingo, Pablo; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Paterna, Spain, Email: pablo.villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000523343100006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4360
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Mena, O.; Pan, S.
Title Dynamical dark sectors and neutrino masses and abundances Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 2 Pages 023535 - 17pp
Keywords (up)
Abstract We investigate generalized interacting dark matter-dark energy scenarios with a time-dependent coupling parameter, allowing also for freedom in the neutrino sector. The models are tested in the phantom and quintessence regimes, characterized by equations of state, w(x) < -1 and w(x) > -1, respectively. Our analyses show that for some of the scenarios, the existing tensions on the Hubble constant H-0 and on the clustering parameter S-8 can be significantly alleviated. The relief is either due to (a) a dark energy component which lies within the phantom region or (b) the presence of a dynamical coupling in quintessence scenarios. The inclusion of massive neutrinos into the interaction schemes does not affect either the constraints on the cosmological parameters or the bounds on the total number or relativistic degrees of freedom N-eff, which are found to be extremely robust and, in general, strongly consistent with the canonical prediction N-eff = 3.045. The most stringent bound on the total neutrino mass M-nu is M-nu, < 0.116 eV and it is obtained within a quintessence scenario in which the matter mass-energy density is only mildly affected by the presence of a dynamical dark sector coupling.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000550997900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4472
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Long-baseline neutrino oscillation physics potential of the DUNE experiment Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 10 Pages 978 - 34pp
Keywords (up)
Abstract The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5 sigma, for all delta CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 sigma (5 sigma) after an exposure of 5 (10) years, for 50% of all delta CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22 theta 13 to current reactor experiments.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: callum.wilkinson@lhep.unibe.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000586405100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4594
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 9 Pages 092003 - 20pp
Keywords (up)
Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587596500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4598
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Pan, S.; Mena, O.
Title Emergent Dark Energy, neutrinos and cosmological tensions Type Journal Article
Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 31 Issue Pages 100762 - 9pp
Keywords (up)
Abstract The Phenomenologically Emergent Dark Energy model, a dark energy model with the same number of free parameters as the flat Lambda CDM, has been proposed as a working example of a minimal model which can avoid the current cosmological tensions. A straightforward question is whether or not the inclusion of massive neutrinos and extra relativistic species may spoil such an appealing phenomenological alternative. We present the bounds on M-nu and N-eff and comment on the long standing H-0 and sigma(8) tensions within this cosmological framework with a wealth of cosmological observations. Interestingly, we find, at 95% confidence level, and with the most complete set of cosmological observations, M-nu similar to 0.21(-0.14)(+0.15) eV and N-eff = 3.03 +/- 0.32 i.e. an indication for a non-zero neutrino mass with a significance above 2 sigma. The well known Hubble constant tension is considerably easened, with a significance always below the 2 sigma level. (C) 2020 Elsevier B.V. All rights reserved.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000630235100022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4752
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Volume IV The DUNE far detector single-phase technology Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 8 Pages T08010 - 619pp
Keywords (up)
Abstract The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE.
Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000635160500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4785
Permanent link to this record