|
Records |
Links |
|
Author |
Escudero, M.; Mena, O.; Vincent, A.C.; Wilkinson, R.J.; Boehm, C. |
|
|
Title |
Exploring dark matter microphysics with galaxy surveys |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
09 |
Issue |
9 |
Pages |
034 - 16pp |
|
|
Keywords |
dark matter theory; galaxy surveys; cosmological parameters from CMBR |
|
|
Abstract |
We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ACDM scenario. To quantify this statement, we focus on an extension of ACDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations. |
|
|
Address |
[Escudero, Miguel; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: miguel.Escudero@uv.s; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000365690000034 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
2480 |
|
Permanent link to this record |
|
|
|
|
Author |
Escudero, M.; Ramirez, H.; Boubekeur, L.; Giusarma, E.; Mena, O. |
|
|
Title |
The present and future of the most favoured inflationary models after Planck 2015 |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
02 |
Issue |
2 |
Pages |
020 - 21pp |
|
|
Keywords |
inflation; cosmological parameters from CMBR; CMBR experiments |
|
|
Abstract |
The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current Planck temperature and polarization data. Rather than focusing only on r, we focus as well on the running of the primordial power spectrum, alpha(s) and the running thereof, beta(s). If future cosmological measurements, as those from the COrE mission, confirm the current best-fit value for beta(s) greater than or similar to 10(-2) as the preferred one, it will be possible to rule-out the most favoured inflationary models. |
|
|
Address |
[Escudero, Miguel; Ramirez, Hector; Boubekeur, Lotfi; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000372467600021 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
2590 |
|
Permanent link to this record |
|
|
|
|
Author |
Esteban, I.; Mena, O.; Salvado, J. |
|
|
Title |
Nonstandard neutrino cosmology dilutes the lensing anomaly |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
106 |
Issue |
8 |
Pages |
083516 - 9pp |
|
|
Keywords |
|
|
|
Abstract |
Despite the impressive success of the standard cosmological model, several anomalies defy its triumph. Among them is the so-called lensing anomaly: The Planck satellite observes stronger cosmic microwave background (CMB) gravitational lensing than expected. The role of neutrinos in this anomaly has been mostly overlooked, despite their key role in CMB lensing, because in the standard scenario they tend to increase the tension. Here, we show that this strongly depends on the assumed neutrino equation of state. We demonstrate that if neutrinos have yet undiscovered long-range interactions, the lensing pattern is significantly affected, rendering the lensing anomaly as a statistical fluctuation. Our results, thus, open up a window to link anomalous CMB lensing with present and future cosmological, astrophysical, and laboratory measurements of neutrino properties. |
|
|
Address |
[Esteban, Ivan] Ohio State Univ, Ctr Cosmol & AstroParticle Phys CCAPP, Columbus, OH 43210 USA, Email: esteban.6@osu.edu; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000886611900003 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5415 |
|
Permanent link to this record |
|
|
|
|
Author |
Fernandez-Martinez, E.; Giordano, G.; Mena, O.; Mocioiu, I. |
|
|
Title |
Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
82 |
Issue |
9 |
Pages |
093011 - 7pp |
|
|
Keywords |
|
|
|
Abstract |
The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters. |
|
|
Address |
[Fernandez-Martinez, Enrique] Werner Heisenberg Inst, Max Planck Inst Phys, D-80805 Munich, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000284259000002 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ elepoucu @ |
Serial |
332 |
|
Permanent link to this record |
|
|
|
|
Author |
Fernandez-Martinez, E.; Li, T.; Pascoli, S.; Mena, O. |
|
|
Title |
Improvement of the low energy neutrino factory |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
81 |
Issue |
7 |
Pages |
073010 - 13pp |
|
|
Keywords |
|
|
|
Abstract |
The low energy neutrino factory has been proposed as a very sensitive setup for future searches for CP violation and matter effects. Here we study how its performance is affected when the experimental specifications of the setup are varied. Most notably, we have considered the addition of the “platinum'' nu(mu) -> nu(e) channel. We find that, while theoretically the extra channel provides very useful complementary information and helps to lift degeneracies, its practical usefulness is lost when considering realistic background levels. Conversely, an increase in statistics in the ”golden'' nu(mu) -> nu(e) channel and, to some extent, an improvement in the energy resolution, lead to an important increase in the performance of the facility, given the rich energy dependence of the "golden'' channel at these energies. We show that a low energy neutrino factory with a baseline of 1300 km, muon energy of 4.5 GeV, and either a 20 kton totally active scintillating detector or 100 kton liquid argon detector, can have outstanding sensitivity to the neutrino oscillation parameters theta(13), delta, and the mass hierarchy. For our estimated exposure of 2: 8 x 10(23) kton x decays per muon polarity, the low energy neutrino factory has sensitivity to theta(13) and delta for sin(2)(2 theta(13)) > 10(-4) and to the mass hierarchy for sin(2)(2 theta(13)) > 10(-3) |
|
|
Address |
[Martinez, Enrique Fernandez] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: enfmarti@mppmu.mpg.de |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000277201900018 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ elepoucu @ |
Serial |
458 |
|
Permanent link to this record |
|
|
|
|
Author |
Forconi, M.; Giare, W.; Mena, O.; Ruchika; Di Valentino, E.; Melchiorri, A.; Nunes, R.C. |
|
|
Title |
A double take on early and interacting dark energy from JWST |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
05 |
Issue |
5 |
Pages |
097 - 37pp |
|
|
Keywords |
high redshift galaxies; dark energy theory; physics of the early universe |
|
|
Abstract |
The very first light captured by the James Webb Space Telescope (JWST) revealed a population of galaxies at very high redshifts more massive than expected in the canonical Lambda CDM model of structure formation. Barring, among others, a systematic origin of the issue, in this paper, we test alternative cosmological perturbation histories. We argue that models with a larger matter component ohm m and/or a larger scalar spectral index n s can substantially improve the fit to JWST measurements. In this regard, phenomenological extensions related to the dark energy sector of the theory are appealing alternatives, with Early Dark Energy emerging as an excellent candidate to explain (at least in part) the unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark Energy models, despite producing higher values of matter clustering parameters such as sigma 8 , are generally disfavored by JWST measurements. This is due to the energy -momentum flow from the dark matter to the dark energy sector, implying a smaller matter energy density. Upcoming observations may either strengthen the evidence or falsify some of these appealing phenomenological alternatives to the simplest Lambda CDM picture. |
|
|
Address |
[Forconi, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:001259284100005 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
6179 |
|
Permanent link to this record |
|
|
|
|
Author |
Forconi, M.; Ruchika; Melchiorri, A.; Mena, O.; Menci, N. |
|
|
Title |
Do the early galaxies observed by JWST disagree with Planck's CMB polarization measurements? |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
10 |
Issue |
10 |
Pages |
012 - 16pp |
|
|
Keywords |
cosmological parameters from CMBR; high redshift galaxies; CMBR polarisation; reionization |
|
|
Abstract |
The recent observations from the James Webb Space Telescope have led to a surprising discovery of a significant density of massive galaxies with masses of M >= 10(10.5)M(circle dot) at redshifts of approximately z similar to 10. This corresponds to a stellar mass density of roughly rho* similar to 10(6)M(circle dot) Mpc(-3). Despite making conservative assumptions regarding galaxy formation, this finding may not be compatible with the standard.CDM cosmology that is favored by observations of CMB Anisotropies from the Planck satellite. In this paper, we confirm the substantial discrepancy with Planck's results within the.CDM framework. Assuming a value of is an element of = 0.2 for the efficiency of converting baryons into stars, we indeed find that the.CDM model is excluded at more than 99.7% confidence level (C.L.). An even more significant exclusion is found for is an element of similar to 0.1, while a better agreement, but still in tension at more than 95%, is obtained for is an element of = 0.32. This tension, as already discussed in the literature, could arise either from systematics in the JWST measurements or from new physics. Here, as a last-ditch effort, we point out that disregarding the large angular scale polarization obtained by Planck, which allows for significantly larger values of the matter clustering parameter sigma(8), could lead to better agreement between Planck and JWST within the.CDM framework. Assuming.CDM and no systematics in the current JWST results, this implies either an unknown systematic error in current large angular scale CMB polarization measurements or an unidentified physical mechanism that could lower the expected amount of CMB polarization produced during the epoch of reionization. Interestingly, the model compatible with Planck temperature-only data and JWST observation also favors a higher Hubble constant H-0 = 69.0 +/- 1.1 km/s/Mpc at 68% C.L., in better agreement with observations based on SN-Ia luminosity distances. |
|
|
Address |
[Forconi, Matteo; Ruchika; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: matteo.forconi@roma1.infn.it; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:001142721200001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5903 |
|
Permanent link to this record |
|
|
|
|
Author |
Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M. |
|
|
Title |
Neutrino masses and their ordering: global data, priors and models |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
03 |
Issue |
3 |
Pages |
011 - 22pp |
|
|
Keywords |
neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay |
|
|
Abstract |
We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions. |
|
|
Address |
[Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000445497200001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3736 |
|
Permanent link to this record |
|
|
|
|
Author |
Gariazzo, S.; Di Valentino, E.; Mena, O.; Nunes, R.C. |
|
|
Title |
Late-time interacting cosmologies and the Hubble constant tension |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
106 |
Issue |
2 |
Pages |
023530 - 12pp |
|
|
Keywords |
?CDM scenario; cosmic microwave background (CMB) |
|
|
Abstract |
In this manuscript we reassess the potential of interacting dark matter-dark energy models in solving the Hubble constant tension. These models have been proposed but also questioned as possible solutions to the H0 problem. Here we examine several interacting scenarios against cosmological observations, focusing on the important role played by the calibration of supernovae data. In order to reassess the ability of interacting dark matter-dark energy scenarios in easing the Hubble constant tension, we systematically confront their theoretical predictions using a prior on the supernovae Ia absolute magnitude MB, which has been argued to be more robust and certainly less controversial than using a prior on the Hubble constant H0. While some data combinations do not show any preference for interacting dark sectors and in some of these scenarios the clustering sigma 8 tension worsens, interacting cosmologies with a dark energy equation of state w < -1 are preferred over the canonical lambda CDM picture even with cosmic microwave background data alone and also provide values of sigma 8 in perfect agreement with those from weak lensing surveys. Future cosmological surveys will test these exotic dark energy cosmologies by accurately measuring the dark energy equation of state and its putative redshift evolution. |
|
|
Address |
[Gariazzo, Stefano] Ist Nazl Fis Nucleare INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000843205100006 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5346 |
|
Permanent link to this record |
|
|
|
|
Author |
Gariazzo, S.; Escudero, M.; Diamanti, R.; Mena, O. |
|
|
Title |
Cosmological searches for a noncold dark matter component |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
96 |
Issue |
4 |
Pages |
043501 - 11pp |
|
|
Keywords |
|
|
|
Abstract |
We explore an extended cosmological scenario where the dark matter is an admixture of cold and additional noncold species. The mass and temperature of the noncold dark matter particles are extracted from a number of cosmological measurements. Among others, we consider tomographic weak lensing data and Milky Way dwarf satellite galaxy counts. We also study the potential of these scenarios in alleviating the existing tensions between local measurements and cosmic microwave background ( CMB) estimates of the S-8 parameter, with S-8 = sigma(8)root Omega(m), and of the Hubble constant H-0. In principle, a subdominant, noncold dark matter particle with a mass m(X) similar to keV, could achieve the goals above. However, the preferred ranges for its temperature and its mass are different when extracted from weak lensing observations and from Milky Way dwarf satellite galaxy counts, since these two measurements require suppressions of the matter power spectrum at different scales. Therefore, solving simultaneously the CMB-weak lensing tensions and the small scale crisis in the standard cold dark matter picture via only one noncold dark matter component seems to be challenging. |
|
|
Address |
[Gariazzo, Stefano; Escudero, Miguel; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000406911700001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3236 |
|
Permanent link to this record |