|   | 
Details
   web
Records
Author (up) Arganda, E.; Marcano, X.; Martin Lozano, V.; Medina, A.D.; Perez, A.D.; Szewc, M.; Szynkman, A.
Title A method for approximating optimal statistical significances with machine-learned likelihoods Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 11 Pages 993 - 14pp
Keywords
Abstract Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results.
Address [Arganda, Ernesto; Marcano, Xabier] Inst Fis Teor UAM CSIC, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain, Email: ernesto.arganda@csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000879175000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5404
Permanent link to this record
 

 
Author (up) Bahl, H.; Martin Lozano, V.; Weiglein, G.
Title Simplified models for resonant neutral scalar production with missing transverse energy final states Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 042 - 37pp
Keywords Multi-Higgs Models; Other Weak Scale BSM Models; Specific BSM Phenomenology
Abstract Additional Higgs bosons appear in many extensions of the Standard Model (SM). While most existing searches for additional Higgs bosons concentrate on final states consisting of SM particles, final states containing beyond the SM (BSM) particles play an important role in many BSM models. In order to facilitate future searches for such final states, we develop a simplified model framework for heavy Higgs boson decays to a massive SM boson as well as one or more invisible particles. Allowing one kind of BSM mediator in each decay chain, we classify the possible decay topologies for each final state, taking into account all different possibilities for the spin of the mediator and the invisible particles. Our comparison of the kinematic distributions for each possible model realization reveals that the distributions corresponding to the different simplified model topologies are only mildly affected by the different spin hypotheses, while there is significant sensitivity for distinguishing between the different decay topologies. As a consequence, we point out that expressing the results of experimental searches in terms of the proposed simplified model topologies will allow one to constrain wide classes of different BSM models. The application of the proposed simplified model framework is explicitly demonstrated for the example of a mono-Higgs search. For each of the simplified models that are proposed in this paper we provide all necessary ingredients for performing Monte-Carlo simulations such that they can readily be applied in experimental analyses.
Address [Bahl, Henning] Univ Chicago, Dept Phys, 5720 South Ellis Ave, Chicago, IL 60637 USA, Email: hbahl@uchicago.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000881997400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5409
Permanent link to this record
 

 
Author (up) Cerdeño, D.G.; De Romeri, V.; Martin Lozano, V.; Olive, K.A.; Seto, O.
Title The Constrained NMSSM with right-handed neutrinos Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 4 Pages 290 - 12pp
Keywords
Abstract In this article, we demonstrate that the inclusion of right-handed neutrino superfields in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) makes it possible to impose universality conditions on the soft supersymmetry-breaking parameters at the Grand Unification scale, alleviating many of the problems of the so-called Constrained NMSSM. We have studied the renormalization group equations of this model, showing that right-handed neutrinos greatly contribute to driving the singlet Higgs mass-squared parameter negative, which makes it considerably easier to satisfy the conditions for radiative electroweak symmetry breaking. The new fields also lead to larger values of the Standard Model Higgs mass, thus making it easier to reproduce the measured value. As a consequence, all bounds from colliders and low-energy observables can be fulfilled in wide areas of the parameter space. However, the relic density in these regions is generally too high requiring some form of late entropy production to dilute the density of the lightest supersymmetric particle.
Address [Cerdeno, David G.] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England, Email: lozano@physik.uni-bonn.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000429589900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3558
Permanent link to this record
 

 
Author (up) De Romeri, V.; Kim, J.S.; Martin Lozano, V.; Rolbiecki, K.; Ruiz de Austri, R.
Title Confronting dark matter with the diphoton excess from a parent resonance decay Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 5 Pages 262 - 13pp
Keywords
Abstract A diphoton excess with an invariant mass of about 750 GeV has been recently reported by both ATLAS and CMS experiments at LHC. While the simplest interpretation requires the resonant production of a 750 GeV (pseudo) scalar, here we consider an alternative setup, with an additional heavy parent particle which decays into a pair of 750 GeV resonances. This configuration improves the agreement between the 8 and 13 TeV data. Moreover, we include a dark matter candidate in the form of a Majorana fermion which interacts through the 750 GeV portal. The invisible decays of the light resonance help to suppress additional decay channels into Standard Model particles in association with the diphoton signal. We realise our hierarchical framework in the context of an effective theory, and we analyse the diphoton signal as well as the consistency with other LHC searches. We finally address the interplay of the LHC results with the dark matter phenomenology, namely the compatibility with the relic density abundance and the indirect detection bounds.
Address [De Romeri, Valentina; Kim, Jong Soo; Martin-Lozano, Victor; Rolbiecki, Krzysztof] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000399931700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3088
Permanent link to this record
 

 
Author (up) De Romeri, V.; Martin Lozano, V.; Sanchez Garcia, G.
Title Neutrino window to scalar leptoquarks: From low energy to colliders Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 5 Pages 055014 - 21pp
Keywords
Abstract Leptoquarks are theorized particles of either scalar or vector nature that couple simultaneously to quarks and leptons. Motivated by recent measurements of coherent elastic neutrino -nucleus scattering, we consider the impact of scalar leptoquarks coupling to neutrinos on a few complementary processes, from low energy to colliders. In particular, we set competitive constraints on the typical mass and coupling of scalar leptoquarks by analyzing recent COHERENT data. We compare these constraints with bounds from atomic parity violation experiments, deep inelastic neutrino -nucleon scattering and collider data. Our results highlight a strong complementarity between different facilities and demonstrate the power of coherent elastic neutrino -nucleus scattering experiments to probe leptoquark masses in the sub-TeV range. Finally, we also present prospects for improving current bounds with future upgrades of the COHERENT detectors and the planned European Spallation Source.
Address [De Romeri, Valentina; Lozano, Victor Martin; Garcia, G. Sanchez] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001195802100003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6039
Permanent link to this record