toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bringmann, T.; Donato, F.; Lineros, R.A. url  doi
openurl 
  Title Radio data and synchrotron emission in consistent cosmic ray models Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 049 - 12pp  
  Keywords cosmic ray theory; dark matter theory  
  Abstract It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large (L greater than or similar to 15 kpc) and, even stronger, small (L less than or similar to 1 kpc) effective diffusive halo sizes. This has profound implications for, e.g., in direct dark matter searches.  
  Address [Bringmann, Torsten] Univ Hamburg, Inst Theoret Phys, D-22761 Hamburg, Germany, Email: torsten.bringmann@desy.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 938  
Permanent link to this record
 

 
Author (up) Cembranos, J.A.R.; de la Cruz-Dombriz, A.; Gammaldi, V.; Lineros, R.A.; Maroto, A.L. url  doi
openurl 
  Title Reliability of Monte Carlo event generators for gamma-ray dark matter searches Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 077 - 21pp  
  Keywords  
  Abstract We study the differences in the gamma-ray spectra simulated by four Monte Carlo event generator packages developed in particle physics. Two different versions of PYTHIA and two of HERWIG are analyzed, namely PYTHIA 6.418 and HERWIG 6.5.10 in Fortran and PYTHIA 8.165 and HERWIG 2.6.1 in C++. For all the studied channels, the intrinsic differences between them are shown to be significative and may play an important role in misunderstanding dark matter signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325229300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1616  
Permanent link to this record
 

 
Author (up) Cermeño, M.; Perez-Garcia, M.A.; Lineros, R.A. url  doi
openurl 
  Title Enhanced neutrino emissivities in pseudoscalar-mediated dark matter annihilation in neutron stars Type Journal Article
  Year 2018 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 863 Issue 2 Pages 157 - 9pp  
  Keywords dark matter; neutrinos; stars: neutron  
  Abstract We calculate neutrino emissivities from self-annihilating dark matter (DM) (chi) in the dense and hot stellar interior of a (proto)neutron star. Using a model where DM interacts with nucleons in the stellar core through a pseudoscalar boson (a) we find that the neutrino production rates from the dominant reaction channels chi -> nu(nu) over bar or chi chi -> aa, with subsequent decay of the mediator a -> nu(nu) over bar, could locally match and even surpass those of the standard neutrinos from the modified nuclear URCA processes at early ages. We find that the emitting region can be localized in a tiny fraction of the star (less than a few percent of the core volume) and the process can last its entire lifetime for some cases under study. We discuss the possible consequences of our results for stellar cooling in light of existing DM constraints.  
  Address [Cermeno, M.; Perez-Garcia, M. A.] Univ Salamanca, Dept Fundamental Phys, Plaza Merced S-N, E-37008 Salamanca, Spain, Email: marinacgavilan@usal.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442222700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3696  
Permanent link to this record
 

 
Author (up) de Salas, P.F.; Lineros, R.A.; Tortola, M. url  doi
openurl 
  Title Neutrino propagation in the Galactic dark matter halo Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 12 Pages 123001 - 14pp  
  Keywords  
  Abstract Neutrino oscillations are a widely observed and well-established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant GF with no further restrictions on its flavor structure. For the galactic dark matter profile we consider a homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light O(sub-eV-keV) or weakly interacting massive particlelike dark matter particle or as a new interaction with a mediator of O(sub-eV-keV) mass.  
  Address [de Salas, P. F.; Lineros, R. A.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular CSIC, Parc Cient,Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389028000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2873  
Permanent link to this record
 

 
Author (up) Di Mauro, M.; Donato, F.; Fornengo, N.; Lineros, R.A.; Vittino, A. url  doi
openurl 
  Title Interpretation of AMS-02 electrons and positrons data Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 006 - 33pp  
  Keywords ultra high energy cosmic rays; particle acceleration; cosmic ray theory; cosmic ray experiments  
  Abstract We perform a combined analysis of the recent AMS-02 data on electrons, positrons, electrons plus positrons and positron fraction, in a self-consistent framework where we realize a theoretical modeling of all the astrophysical components that can contribute to the observed fluxes in the whole energy range. The primary electron contribution is modeled through the sum of an average flux from distant sources and the fluxes from the local supernova remnants in the Green catalog. The secondary electron and positron fluxes originate from interactions on the interstellar medium of primary cosmic rays, for which we derive a novel determination by using AMS-02 proton and helium data. Primary positrons and electrons from pulsar wind nebulae in the ATNF catalog are included and studied in terms of their most significant (while loosely known) properties and under different assumptions (average contribution from the whole catalog, single dominant pulsar, a few dominant pulsars). We obtain a remarkable agreement between our various modeling and the AMS-02 data for all types of analysis, demonstrating that the whole AMS-02 leptonic data admit a self-consistent interpretation in terms of astrophysical contributions.  
  Address [Di Mauro, M.; Donato, F.; Fornengo, N.; Vittino, A.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy, Email: mattia.dimauro@to.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334496500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1771  
Permanent link to this record
 

 
Author (up) Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title The isotropic radio background revisited Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 008 - 36pp  
  Keywords cosmic ray theory; galactic magnetic fields; dark matter theory  
  Abstract We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.  
  Address [Fornengo, Nicolao; Regis, Marco] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy, Email: fornengo@to.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334496500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1772  
Permanent link to this record
 

 
Author (up) Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title Galactic synchrotron emission from WIMPs at radio frequencies Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 005 - 25pp  
  Keywords dark matter theory; cosmic ray theory; absorption and radiation processes  
  Abstract Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with “thermal” annihilation cross-sections, i.e. (sigma v) = 3 x 10(-26) cm(3) s(-1); and masses M-DM less than or similar to 10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.  
  Address [Fornengo, Nicolao; Regis, Marco] Univ Turin, Dipartimento Fis Teor, Ist Nazl Fis Nucl, I-10125 Turin, Italy, Email: fornengo@to.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 939  
Permanent link to this record
 

 
Author (up) Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title Cosmological radio emission induced by WIMP Dark Matter Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 033 - 27pp  
  Keywords dark matter theory; power spectrum  
  Abstract We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.  
  Address [Fornengo, N.; Regis, M.] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy, Email: fornengo@to.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302949600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 999  
Permanent link to this record
 

 
Author (up) Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title Possibility of a Dark Matter Interpretation for the Excess in Isotropic Radio Emission Reported by ARCADE Type Journal Article
  Year 2011 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 107 Issue 27 Pages 271302 - 5pp  
  Keywords  
  Abstract The ARCADE 2 Collaboration has recently measured an isotropic radio emission which is significantly brighter than the expected contributions from known extra-galactic sources. The simplest explanation of such excess involves a "new'' population of unresolved sources which become the most numerous at very low (observationally unreached) brightness. We investigate this scenario in terms of synchrotron radiation induced by weakly interacting massive particle (WIMP) annihilations or decays in extra-galactic halos. Intriguingly, for light-mass WIMPs with a thermal annihilation cross section, the level of expected radio emission matches the ARCADE observations.  
  Address [Fornengo, N.; Regis, M.] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298611000009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 855  
Permanent link to this record
 

 
Author (up) Franca, U.; Lineros, R.A.; Palacio, J.; Pastor, S. url  doi
openurl 
  Title Probing interactions within the dark matter sector via extra radiation contributions Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 12 Pages 123521 - 6pp  
  Keywords  
  Abstract The nature of dark matter is one of the most thrilling riddles for both cosmology and particle physics nowadays. While in the typical models the dark sector is composed only by weakly interacting massive particles, an arguably more natural scenario would include a whole set of gauge interactions which are invisible for the standard model but that are in contact with the dark matter. We present a method to constrain the number of massless gauge bosons and other relativistic particles that might be present in the dark sector using current and future cosmic microwave background data, and provide upper bounds on the size of the dark sector. We use the fact that the dark matter abundance depends on the strength of the interactions with both sectors, which allows one to relate the freeze-out temperature of the dark matter with the temperature of this cosmic background of dark gauge bosons. This relation can then be used to calculate how sizable is the impact of the relativistic dark sector in the number of degrees of freedom of the early Universe, providing an interesting and testable connection between cosmological data and direct/indirect detection experiments. The recent Planck data, in combination with other cosmic microwave background experiments and baryonic acoustic oscillations data, constrains the number of relativistic dark gauge bosons, when the freeze-out temperature of the dark matter is larger than the top mass, to be N less than or similar to 14 for the simplest scenarios, while those limits are slightly relaxed for the combination with the Hubble constant measurements to N less than or similar to 20. Future releases of Planck data are expected to reduce the uncertainty by approximately a factor of 3, which will reduce significantly the parameter space of allowed models.  
  Address [Franca, Urbano; Lineros, Roberto A.; Palacio, Joaquim; Pastor, Sergio] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320765300005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1487  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva