toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bruce, R. et al; Lari, L. url  doi
openurl 
  Title Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider Type Journal Article
  Year 2014 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams  
  Volume 17 Issue 8 Pages 081004 - 16pp  
  Keywords  
  Abstract The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.  
  Address [Bruce, R.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.] CERN, CH-1211 Geneva, Switzerland, Email: roderik.bruce@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-4402 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341259800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1905  
Permanent link to this record
 

 
Author (up) Cauchi, M.; Assmann, R.W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N. doi  openurl
  Title Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts Type Journal Article
  Year 2015 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams  
  Volume 18 Issue 4 Pages 041002 - 14pp  
  Keywords  
  Abstract The CERN Large Hadron Collider (LHC) is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs), made of the tungsten heavy alloy INERMET (R) 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM) approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.  
  Address [Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.] CERN, CH-1211 Geneva 23, Switzerland, Email: marija.cauchi@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-4402 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352473800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2180  
Permanent link to this record
 

 
Author (up) Cauchi, M.; Assmann, R.W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N. doi  openurl
  Title Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators Type Journal Article
  Year 2015 Publication Physical Review Special Topics-Accelerators and Beams Abbreviated Journal Phys. Rev. Spec. Top.-Accel. Beams  
  Volume 18 Issue 2 Pages 021001 - 14pp  
  Keywords  
  Abstract The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.  
  Address [Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.] CERN, Geneva, Switzerland, Email: marija.cauchi@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-4402 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352074600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2178  
Permanent link to this record
 

 
Author (up) Scandale, W et al; Lari, L. doi  openurl
  Title Deflection of high energy protons by multiple volume reflections in a modified multi-strip silicon deflector Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research B Abbreviated Journal Nucl. Instrum. Methods Phys. Res. B  
  Volume 338 Issue Pages 108-111  
  Keywords Accelerator; Beam collimation; Crystal; Channeling; Volume reflection  
  Abstract The effect of multiple volume reflections in one crystal was observed in each of several bent silicon strips for 400 GeV/c protons. This considerably increased the particle deflections. Some particles were also deflected due to channeling in one of the subsequent strips. As a result, the incident beam was strongly spread because of opposite directions of the deflections. A modified multi-strip deflector produced by periodic grooves on the surface of a thick silicon plate was used for these measurements. This technique provides perfect mutual alignment between crystal strips. Such multi-strip deflector may be effective for collider beam halo collimation and a study is planned at the CERN SPS circulating beam.  
  Address [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343390400016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1974  
Permanent link to this record
 

 
Author (up) Scandale, W. et al; Lari, L. doi  openurl
  Title Observation of nuclear dechanneling length reduction for high energy protons in a short bent crystal Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 743 Issue Pages 440-443  
  Keywords Crystal; Channeling; Beam; Deflection  
  Abstract Deflection of 400 GeV/c protons by a short bent silicon crystal was studied at the CERN SPS. It was shown that the dechanneling probability increases while the dechanneling length decreases with an increase of incident angles of particles relative to the crystal planes. The observation of the dechanneling length reduction provides evidence of the particle population increase at the top levels of transverse energies in the potential well of the planar channels. (C) 2015 The Authors. Published by Elsevier B.V.  
  Address [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland, Email: alexander.taratin@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352147500065 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2201  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva