|
Records |
Links |
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Volume IV The DUNE far detector single-phase technology |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
|
|
Volume |
15 |
Issue |
8 |
Pages |
T08010 - 619pp |
|
|
Keywords |
|
|
|
Abstract |
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE. |
|
|
Address |
[Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000635160500002 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4785 |
|
Permanent link to this record |
|
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Volume III DUNE far detector technical coordination |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
|
|
Volume |
15 |
Issue |
8 |
Pages |
T08009 - 193pp |
|
|
Keywords |
|
|
|
Abstract |
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module. |
|
|
Address |
[Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000635160500001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4786 |
|
Permanent link to this record |
|
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Izmaylov, A.; Sorel, M.; Stamoulis, P. |
|
|
Title |
Upper bound on neutrino mass based on T2K neutrino timing measurements |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
93 |
Issue |
1 |
Pages |
012006 - 15pp |
|
|
Keywords |
|
|
|
Abstract |
The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV/c(2) range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be m(v)(2) < 5.6 MeV2/c(4). |
|
|
Address |
[Kitching, P.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB, Canada |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000369325800001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
2544 |
|
Permanent link to this record |
|
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Izmaylov, A.; Novella, P.; Sorel, M. |
|
|
Title |
Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 x 10(21) protons on target |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
96 |
Issue |
1 |
Pages |
011102 - 9pp |
|
|
Keywords |
|
|
|
Abstract |
We report measurements by the T2K experiment of the parameters theta(23) and Delta m(32)(2) governing the disappearance of muon neutrinos and antineutrinos in the three-flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using 7.482 x 10(20) POT in neutrino running mode and 7.471 x 10(20) POT in antineutrino mode, T2K obtained sin(2) (theta(23)) = 0.51(-0.07)(+0.08) and Delta (m) over bar (2)(32) = (+0.15)(-2.53) -0.13 x 10(-3) eV(2)/c(4) for neutrinos, and sin(2) ((theta) over bar (23)) = 0.42(-0.07)(+0.25) and Delta(m) over bar (2)(32) = 2.55(-0.27)(+0.33) x 10(-3) eV(2)/c(4) for antineutrinos (assuming normal mass ordering). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. |
|
|
Address |
[Ariga, A.; Ereditato, A.; Koller, P. P.; Nirkko, M.; Pistillo, C.; Redij, A.; Wilkinson, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, Bern, Switzerland |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000406639300001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3228 |
|
Permanent link to this record |
|
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Supernova neutrino burst detection with the Deep Underground Neutrino Experiment |
Type |
Journal Article |
|
Year |
2021 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
|
|
Volume |
81 |
Issue |
5 |
Pages |
423 - 26pp |
|
|
Keywords |
|
|
|
Abstract |
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered. |
|
|
Address |
[Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000661101700001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4859 |
|
Permanent link to this record |
|
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Searching for solar KDAR with DUNE |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
10 |
Issue |
10 |
Pages |
065 - 28pp |
|
|
Keywords |
dark matter theory; neutrino detectors |
|
|
Abstract |
The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions. |
|
|
Address |
[Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000758221400019 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5141 |
|
Permanent link to this record |
|
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Izmaylov, A.; Sorel, M.; Stamoulis, P. |
|
|
Title |
Search for short baseline nu(e) disappearance with the T2K near detector |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
91 |
Issue |
5 |
Pages |
051102 - 8pp |
|
|
Keywords |
|
|
|
Abstract |
The T2K experiment has performed a search for nu(e) disappearance due to sterile neutrinos using 5.9 x 10(20) protons on target for a baseline of 280 m in a neutrino beam peaked at about 500 MeV. A sample of nu(e) CC interactions in the off-axis near detector has been selected with a purity of 63% and an efficiency of 26%. The p-value for the null hypothesis is 0.085 and the excluded region at 95% C.L. is approximately sin(2)2 theta(ee) > 0.3 for Delta m(eff)(2) > 7 eV(2)/c(4). |
|
|
Address |
[Kitching, P.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB, Canada |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-7998 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000351040800001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
2149 |
|
Permanent link to this record |
|
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |
|
|
Title |
Search for neutral-current induced single photon production at the ND280 near detector in T2K |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Journal of Physics G |
Abbreviated Journal |
J. Phys. G |
|
|
Volume |
46 |
Issue |
8 |
Pages |
08LT01 - 16pp |
|
|
Keywords |
T2K; neutrino; neutrino oscillation; neutrino interaction; Mini-BooNE; CP violation |
|
|
Abstract |
Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of < E-v > similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals. |
|
|
Address |
[Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0954-3899 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000518888100001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4318 |
|
Permanent link to this record |
|
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Izmaylov, A.; Novella, P.; Sorel, M.; Stamoulis, P. |
|
|
Title |
Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
95 |
Issue |
11 |
Pages |
111101 - 9pp |
|
|
Keywords |
|
|
|
Abstract |
A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 10(20) at the GeV scale. |
|
|
Address |
[Ariga, A.; Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A.; Wilkinson, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, LHEP, Bern, Switzerland |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000404472700001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3185 |
|
Permanent link to this record |
|
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |
|
|
Title |
Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
99 |
Issue |
7 |
Pages |
071103 - 10pp |
|
|
Keywords |
|
|
|
Abstract |
We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7(7.6) x 10(20) protons on target in neutrino (antineutrino) mode. A selection of neutral-current interaction samples is also used to enhance the sensitivity to sterile mixing. No evidence of sterile neutrino mixing in the 3 + 1 model was found from a simultaneous fit to the charged-current muon, electron and neutral-current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude sin(2)theta(24 )for the sterile neutrino mass splitting Delta m(41)(2 )< 3 x 10(-3 )eV(2)/c(4). |
|
|
Address |
[Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000466423400001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3996 |
|
Permanent link to this record |