toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Alioli, S.; Fuster, J.; Garzelli, M.V.; Gavardi, A.; Irles, A.; Melini, D.; Moch, S.O.; Uwer, P.; Voss, K. url  doi
openurl 
  Title Phenomenology of t(t)over-barj plus X production at the LHC Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 146 - 63pp  
  Keywords Specific QCD Phenomenology; Top Quark  
  Abstract We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.  
  Address [Alioli, Simone; Gavardi, Alessandro] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Bicocca, Italy, Email: simone.alioli@unimib.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000801110800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5236  
Permanent link to this record
 

 
Author (up) Aparisi, J.; Fuster, J.; Irles, A.; Rodrigo, G.; Vos, M.; Yamamoto, H.; Hoang, A.; Lepenik, C.; Spira, M.; Tairafune, S.; Yonamine, R. url  doi
openurl 
  Title m(b) at m(H): The Running Bottom Quark Mass and the Higgs Boson Type Journal Article
  Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 128 Issue 12 Pages 122001 - 7pp  
  Keywords  
  Abstract We present a new measurement of the bottom quark mass in the MS scheme at the renormalization scale of the Higgs boson mass from measurements of Higgs boson decay rates at the LHC: -0.31 GeV. The measurement has a negligible theory uncertainty and excellent prospects to improve at the HL-LHC and a future Higgs factory. Confronting this result and mb(mb) from low-energy measurements and mb(mZ) from Z-pole data, with the prediction of the scale evolution of the renormalization group equations, we find strong evidence for the “running” of the bottom quark mass.  
  Address [Aparisi, Javier; Fuster, Juan; Irles, Adrian; Rodrigo, German; Vos, Marcel; Yamamoto, Hitoshi] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: marcel.vos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000782852800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5200  
Permanent link to this record
 

 
Author (up) CALICE Collaboration (White, A. et al); Irles, A. url  doi
openurl 
  Title Design, construction and commissioning of a technological prototype of a highly granular SiPM-on-tile scintillator-steel hadronic calorimeter Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 11 Pages P11018 - 39pp  
  Keywords Calorimeters; Detector alignment and calibration methods (lasers, sources, par ticle- beams); Detector design and construction technologies and materials  
  Abstract The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of 72 x 72 cm2 and a tile size of 3 x 3 cm2. With 38 active layers, the prototype has nearly 22, 000 readout channels, and its total thickness amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented.  
  Address [White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001127235400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5874  
Permanent link to this record
 

 
Author (up) CMS and CALICE Collaborations (Acar, B. et al); Irles, A. url  doi
openurl 
  Title Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 8 Pages P08014 - 32pp  
  Keywords Calorimeters; Large detector systems for particle and astroparticle physics; Radiation-hard detectors; Si microstrip and pad detectors  
  Abstract The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly read out by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.  
  Address [Caraway, B.; Dittmann, J.; Hatakeyama, K.; Kanuganti, A. R.; Wilson, J. S.] Baylor Univ, Waco, TX 76706 USA, Email: Seema.Sharma@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001085057700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5784  
Permanent link to this record
 

 
Author (up) Durieux, G.; Irles, A.; Miralles, V.; Peñuelas, A.; Perello, M.; Poschl, R.; Vos, M. url  doi
openurl 
  Title The electro-weak couplings of the top and bottom quarks – Global fit and future prospects Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 098 - 44pp  
  Keywords Phenomenology of Field Theories in Higher Dimensions  
  Abstract We evaluate the implications of LHC and LEP/SLC measurements for the electro-weak couplings of the top and bottom quarks. We derive global bounds on the Wilson coefficients of ten two-fermion operators in an effective field theory description. The combination of hadron collider data with Z -pole measurements is found to yield tight limits on the operator coefficients that modify the left-handed couplings of the bottom and top quark to the Z boson. We also present projections for the high-luminosity phase of the LHC and for future electron-positron colliders. The bounds on the operator coefficients are expected to improve substantially during the remaining LHC programme, by factors of 1 to 5 if systematic uncertainties are scaled as statistical ones. The operation of an e(+)e(-) collider at a center-of-mass energy above the top-quark pair production threshold is expected to further improve the bounds by one to two orders of magnitude. The combination of measurements in pp and e(+)e(-) collisions allows for a percent-level determination of the top-quark Yukawa coupling, that is robust in a global fit.  
  Address [Durieux, Gauthier] Technion Israel Inst Technol, Dept Phys, IL-3200003 Haifa, Israel, Email: durieux@campus.technion.ac.il;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513489700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4280  
Permanent link to this record
 

 
Author (up) Fuster, J.; Irles, A.; Melini, D.; Uwer, P.; Vos, M. url  doi
openurl 
  Title Extracting the top-quark running mass using t$(t)over-bar-$+1-jet events produced at the Large Hadron Collider Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 11 Pages 794 - 9pp  
  Keywords  
  Abstract We present the calculation of the next-to-leading order QCD corrections for top-quark pair production in association with an additional jet at hadron colliders, using the modified minimal subtraction scheme to renormalize the top- quark mass. The results are compared to measurements at the Large Hadron Collider run I. In particular, we determine the top-quark running mass from a tit of the theoretical results presented here to the LHC data.  
  Address [Fuster, J.; Melini, D.; Vos, M.] Univ Valencia, IFIC, Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: irles@lal.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416366800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3388  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva