|   | 
Details
   web
Records
Author (up) Adolf, P.; Hirsch, M.; Päs, H.
Title Radiative neutrino masses and the Cohen-Kaplan-Nelson bound Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 078 - 14pp
Keywords Neutrino Mixing; Other Weak Scale BSM Models; Specific BSM Phenomenology
Abstract Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.
Address [Adolf, Patrick; Paes, Heinrich] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany, Email: patrick.adolf@tu-dortmund.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001120244000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5851
Permanent link to this record
 

 
Author (up) Alimena, J. et al; Hirsch, M.; Mamuzic, J.; Mitsou, V.A.; Santra, A.
Title Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 9 Pages 090501 - 226pp
Keywords beyond the Standard Model; long-lived particles; Large Hadron Collider; high-luminosity LHC; collider phenomenology; high-energy collider experiments
Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
Address [Alimena, Juliette; Hill, Christopher S.] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA, Email: juliette.alimena@cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000570614200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4535
Permanent link to this record
 

 
Author (up) Alvarez, A.; Cepedello, R.; Hirsch, M.; Porod, W.
Title Temperature effects on the Z(2) symmetry breaking in the scotogenic model Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 3 Pages 035013 - 8pp
Keywords
Abstract It is well known that the scotogenic model for neutrino mass generation can explain correctly the relic abundance of cold dark matter. There have been claims in the literature that an important part of the parameter space of the simplest scotogentic model can be constrained by the requirement that no Z(2)-breaking must occur in the early universe. Here we show that this requirement does not give any constraints on the underlying parameter space at least in those parts, where we can trust perturbation theory. To demonstrate this, we have taken into account the proper decoupling of heavy degrees of freedom in both the thermal potential and in the RGE evolution.
Address [Alvarez, Alexandre; Cepedello, Ricardo; Porod, Werner] Univ Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord, D-97074 Wurzburg, Germany, Email: alexandre.alvarez@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000761164000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5152
Permanent link to this record
 

 
Author (up) Anamiati, G.; Castillo-Felisola, O.; Fonseca, R.M.; Helo, J.C.; Hirsch, M.
Title High-dimensional neutrino masses Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 066 - 26pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.
Address [Anamiati, Gaetana; Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000453296100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3845
Permanent link to this record
 

 
Author (up) Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C.A.; Tortola, M.
Title Quasi-Dirac neutrino oscillations at DUNE and JUNO Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 3 Pages 035032 - 12pp
Keywords
Abstract Quasi-Dirac neutrinos are obtained when the Lagrangian density of a neutrino mass model contains both Dirac and Majorana mass terms, and the Majorana terms are sufficiently small. This type of neutrino introduces new mixing angles and mass splittings into the Hamiltonian, which will modify the standard neutrino oscillation probabilities. In this paper, we focus on the case where the new mass splittings are too small to be measured, but new angles and phases are present. We perform a sensitivity study for this scenario for the upcoming experiments DUNE and JUNO, finding that they will improve current bounds on the relevant parameters. Finally, we also explore the discovery potential of both experiments, assuming that neutrinos are indeed quasi-Dirac particles.
Address [Anamiati, G.; De Romeri, V.; Hirsch, M.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: anamiati@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000482944200007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4124
Permanent link to this record