toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arbelaez, C.; Hirsch, M.; Reichert, L. url  doi
openurl 
  Title Supersymmetric mass spectra and the seesaw type-I scale Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 112  
  Keywords  
  Abstract We calculate supersymmetric mass spectra with cMSSM boundary conditions and a type-I seesaw mechanism added to explain current neutrino data. Using published, estimated errors on SUSY mass observables for a combined LHC+ILC analysis, we perform a theoretical chi(2) analysis to identify parameter regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable with LHC+ILC data. The most important observables are determined to be the (left) smuon and selectron masses and the splitting between them, respectively. Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter space, but can be quite sizeable for large values of the seesaw scale, m S S. Thus, for very roughly m(SS) >= 10(14) GeV hints for type-I seesaw might appear in SUSY mass measurements. Since our numerical results depend sensitively on forecasted error bars, we discuss in some detail the accuracies, which need to be achieved, before a realistic analysis searching for signs of type-I seesaw in SUSY spectra can be carried out.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400032 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1026  
Permanent link to this record
 

 
Author Hirsch, M.; Malinsky, M.; Porod, W.; Reichert, L.; Staub, F. url  doi
openurl 
  Title Hefty MSSM-like light Higgs in extended gauge models Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 084  
  Keywords  
  Abstract It is well known that in the MSSM the lightest neutral Higgs h(0) must be, at the tree level, lighter than the Z boson and that the loop corrections shift this stringent upper bound up to about 130GeV. Extending the MSSM gauge group in a suitable way, the new Higgs sector dynamics can push the tree-level mass of h(0) well above the tree-level MSSM limit if it couples to the new gauge sector. This effect is further pronounced at the loop level and h(0) masses in the 140GeV ballpark can be reached easily. We exemplify this for a sample setting with a low-scale U(1)(R) x U(1)(B-L) gauge symmetry in which neutrino masses can be implemented via the inverse seesaw mechanism.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301453400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1027  
Permanent link to this record
 

 
Author Arbelaez, C.; Fonseca, R.M.; Romao, J.C.; Hirsch, M. url  doi
openurl 
  Title Supersymmetric SO(10)-inspired GUTs with sliding scales Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 7 Pages 075010 - 19pp  
  Keywords  
  Abstract We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of which are inspired by SO(10) unification. We consider three different kinds of setups: (i) the model has exactly one additional intermediate scale with a left-right (LR) symmetric group; (ii) SO(10) is broken to the LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SU(3)(c) X SU(2)(L) X U(1)(R) X U(1)(B-L), before breaking to the standard model (SM) group. We use sets of conditions, which we call the “sliding mechanism,” which yield unification with the extended gauge group(s) allowed at arbitrary intermediate energy scales. All models thus can have new gauge bosons within the reach of the LHC, in principle. We apply additional conditions, such as perturbative unification, renormalizability and anomaly cancellation and find that, despite these requirements, for the ansatz (i) with only one additional scale still around 50 different variants exist that can have a LR symmetry below 10 TeV. For the more complicated schemes (ii) and (iii) literally thousands of possible variants exist, and for scheme (ii) we have also found variants with very low Pati-Salam scales. We also discuss possible experimental tests of the models from measurements of supersymmetry masses. Assuming mSugra boundary conditions we calculate certain combinations of soft terms, called “invariants,” for the different classes of models. Values for all the invariants can be classified into a small number of sets, which contain information about the class of models and, in principle, the scale of beyond-minimal supersymmetric extension of the Standard Model physics, even in case the extended gauge group is broken at an energy beyond the reach of the LHC.  
  Address (up) Univ Tecn Lisboa, Dept Fis, P-1049001 Lisbon, Portugal, Email: Carolina.Arbelaez@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317586900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1401  
Permanent link to this record
 

 
Author Bonnet, F.; Hirsch, M.; Ota, T.; Winter, W. url  doi
openurl 
  Title Systematic decomposition of the neutrinoless double beta decay operator Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 055 - 34pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We discuss the systematic decomposition of the dimension nine neutrinoless double beta decay operator, focusing on mechanisms with potentially small contributions to neutrino mass, while being accessible at the LHC. We first provide a (d = 9 tree-level) complete list of diagrams for neutrinoless double beta decay. From this list one can easily recover all previously discussed contributions to the neutrinoless double beta decay process, such as the celebrated mass mechanism or “exotics”, such as contributions from left-right symmetric models, R-parity violating supersymmetry and leptoquarks. More interestingly, however, we identify a number of new possibilities which have not been discussed in the literature previously. Contact to earlier works based on a general Lorentz-invariant parametrisation of the neutrinoless double beta decay rate is made, which allows, in principle, to derive limits on all possible contributions. We furthermore discuss possible signals at the LHC for mediators leading to the short-range part of the amplitude with one specific example. The study of such contributions would gain particular importance if there were a tension between different measurements of neutrino mass such as coming from neutrinoless double beta decay and cosmology or single beta decay.  
  Address (up) Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: florian.bonnet@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317521200055 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1416  
Permanent link to this record
 

 
Author Adolf, P.; Hirsch, M.; Päs, H. url  doi
openurl 
  Title Radiative neutrino masses and the Cohen-Kaplan-Nelson bound Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 078 - 14pp  
  Keywords Neutrino Mixing; Other Weak Scale BSM Models; Specific BSM Phenomenology  
  Abstract Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.  
  Address (up) [Adolf, Patrick; Paes, Heinrich] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany, Email: patrick.adolf@tu-dortmund.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001120244000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5851  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva