|
Records |
Links |
|
Author |
Aliaga, R.J.; Herrero-Bosch, V.; Capra, S.; Pullia, A.; Duenas, J.A.; Grassi, L.; Triossi, A.; Domingo-Pardo, C.; Gadea, R.; Gonzalez, V.; Huyuk, T.; Sanchis, E.; Gadea, A.; Mengoni, D. |
|
|
Title |
Conceptual design of the TRACE detector readout using a compact, dead time-less analog memory ASIC |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Nuclear Instruments & Methods in Physics Research A |
Abbreviated Journal |
Nucl. Instrum. Methods Phys. Res. A |
|
|
Volume |
800 |
Issue |
|
Pages |
34-39 |
|
|
Keywords |
Analog memory; Dead time; Detector readout; Front-end electronics; Switched Capacitor Array (SCA); Triggerless data acquisition |
|
|
Abstract |
The new TRacking Array for light Charged particle Ejectiles (TRACE) detector system requires monitorization and sampling of all pulses in a large number of channels with very strict space and power consumption restrictions for the front-end electronics and cabling, Its readout system is to be based on analog memory ASICs with 64 channels each that sample a 1 μs window of the waveform of any valid pulses at 200 MHz while discarding any other signals and are read out at 50 MHz with external ADC digitization. For this purpose, a new, compact analog memory architecture is described that allows pulse capture with zero dead time in any channel while vastly reducing the total number of storage cells, particularly for large amounts of input channels. This is accomplished by partitioning the typical Switched Capacitor Array structure into two pipelined, asymmetric stages and introducing FIFO queue-like control circuitry for captured data, achieving total independence between the capture and readout operations. |
|
|
Address |
[Aliaga, R. J.; Domingo-Pardo, C.; Hueyuek, T.; Gadea, A.] Inst Fis Corpuscular, Paterna 46980, Spain, Email: raalva@ific.uv.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0168-9002 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000361878200006 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
2407 |
|
Permanent link to this record |
|
|
|
|
Author |
Alvarez, V.; Herrero-Bosch, V.; Esteve, R.; Laing, A.; Rodriguez, J.; Querol, M.; Monrabal, F.; Toledo, J.F.; Gomez-Cadenas, J.J. |
|
|
Title |
The electronics of the energy plane of the NEXT-White detector |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Nuclear Instruments & Methods in Physics Research A |
Abbreviated Journal |
Nucl. Instrum. Methods Phys. Res. A |
|
|
Volume |
917 |
Issue |
|
Pages |
68-76 |
|
|
Keywords |
Calorimetry; Front-end electronics; Digital baseline restoration |
|
|
Abstract |
This paper describes the electronics of NEXT-White (NEW) detector PMT plane, a high pressure xenon TPC with electroluminescent amplification (HPXe-EL) currently operating at the Laboratorio Subterraneo de Canfranc (LSC) in Huesca, Spain. In NEXT-White the energy of the event is measured by a plane of photomultipliers (PMTs) located behind a transparent cathode. The PMTs are Hamamatsu R11410-10 chosen due to their low radioactivity. The electronics have been designed and implemented to fulfill strict requirements: an overall energy resolution below 1% and a radiopurity budget of 20 mBq unit(-1) in the chain of Bi-214. All the components and materials have been carefully screened to assure a low radioactivity level and at the same time meet the required front-end electronics specifications. In order to reduce low frequency noise effects and enhance detector safety a grounded cathode connection has been used for the PMTs. This implies an AC-coupled readout and baseline variations in the PMT signals. A detailed description of the electronics and a novel approach based on a digital baseline restoration to obtain a linear response and handle AC coupling effects is presented. The final PMT channel design has been characterized with linearity better than 0.4% and noise below 0.4 mV. |
|
|
Address |
[Alvarez, V; Laing, A.; Rodriguez, J.; Querol, M.; Gomez-Cadenas, J. J.] CSIC, IFIC, Inst Fis Corpuscular, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: vicente.alvarez@ific.uv.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0168-9002 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000455016500010 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3868 |
|
Permanent link to this record |
|
|
|
|
Author |
Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J. |
|
|
Title |
Digital pulse-shape analysis with a TRACE early silicon prototype |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Nuclear Instruments & Methods in Physics Research A |
Abbreviated Journal |
Nucl. Instrum. Methods Phys. Res. A |
|
|
Volume |
764 |
Issue |
|
Pages |
241-246 |
|
|
Keywords |
Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy |
|
|
Abstract |
A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination. |
|
|
Address |
[Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0168-9002 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000341987000030 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
1929 |
|
Permanent link to this record |