|   | 
Details
   web
Records
Author (up) Biggio, C.; Fernandez-Martinez, E.; Filaci, M.; Hernandez-Garcia, J.; Lopez-Pavon, J.
Title Global bounds on the Type-III Seesaw Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 022 - 33pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We derive general bounds on the Type-III Seesaw parameters from a global fit to flavor and electroweak precision data. We explore and compare three Type-III Seesaw realizations: a general scenario, where an arbitrary number of heavy triplets is integrated out without any further assumption, and the more constrained cases in which only 3 or 2 (minimal scenario) additional heavy states are included. The latter assumption implies rather non-trivial correlations in the Yukawa flavor structure of the model so as to reproduce the neutrino masses and mixings as measured in neutrino oscillations experiments and thus qualitative differences can be found with the more general scenario. In particular, we find that, while the bounds on most elements of the dimension 6 operator coefficients are of order 10(-4) for the general and 3-triplet cases, the 2-triplet scenario is more strongly constrained with bounds between 10(-5) and 10(-7) for the different flavours. We also discuss how these correlations affect the present CMS constraints on the Type-III Seesaw in the minimal 2-triplet scenario.
Address [Biggio, Carla; Filaci, Manuele] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: carla.biggio@ge.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000533907600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4400
Permanent link to this record
 

 
Author (up) Blennow, M.; Coloma, P.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D.; Urrea, S.
Title Misconceptions in neutrino oscillations in presence of non-unitary mixing Type Journal Article
Year 2025 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 1017 Issue Pages 116944 - 15pp
Keywords
Abstract Deviations from unitarity of the CKM matrix in the quark sector are considered excellent windows to probe physics beyond the Standard Model. In its leptonic counterpart, the PMNS matrix, these searches are particularly motivated, as the new physics needed to generate neutrino masses often leads to non-unitary mixing among the standard neutrinos. It is then interesting to consider how neutrino oscillations are affected in such scenario. This simple question is, however, subject to several subtleties: What is the correct way to define oscillation probabilities for a non-unitary mixing matrix? Do these probabilities add up to one? Does a non-unitary mixing matrix lead to observable flavor transitions at zero distance? What is the interplay between unitarity constraints obtained from neutrino oscillations and from electroweak precision data? This work aims to shed light on these issues and to clarify the corresponding misconceptions commonly found in the literature. We also compile updated bounds from neutrino oscillation searches to compare with those from flavour and electroweak precision observables.
Address [Blennow, Mattias] AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden, Email: emb@kth.se;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:001492652400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6671
Permanent link to this record
 

 
Author (up) Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D.
Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 030 - 41pp
Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos
Abstract We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.
Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044930400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5607
Permanent link to this record
 

 
Author (up) Chatterjee, A.; Hernandez-Garcia, J.; De Roeck, A.
Title Heavy neutral lepton searches at an ICARUS-like detector using NuMI beam Type Journal Article
Year 2025 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 85 Issue 2 Pages 195 - 15pp
Keywords
Abstract The discovery of non-zero neutrino masses and mixings that the Standard Model (SM) cannot accommodate opens up the possibility of the existence of Heavy Neutral Leptons (HNLs). In minimal models, the HNL production and decay are controlled by SM interactions and the mixing between HNLs and the active neutrino and typically result in relatively long lifetimes if the masses are in the MeV-GeV range. We have studied the physics case and technical feasibility for a dedicated HNL search using the NuMI beam at an ICARUS-like detector. Our analysis demonstrates that the constraints on the mixing of the HNL as a function of its mass for an ICARUS-like detector with NuMI beam are highly competitive with the limits obtained from present experiments.
Address [Chatterjee, Animesh] Phys Res Lab, Ahmadabad 380009, Gujarat, India, Email: animesh.chatterjee@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001445022200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6564
Permanent link to this record
 

 
Author (up) Coloma, P.; Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Pavlovic, Z.
Title GeV-scale neutrinos: interactions with mesons and DUNE sensitivity Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 1 Pages 78 - 24pp
Keywords
Abstract The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced in meson decays. Similarly, provided they are sufficiently heavy, their decay channels may involve mesons in the final state. Although the couplings between mesons and heavy neutrinos have been computed previously, significant discrepancies can be found in the literature. The aim of this paper is to clarify such discrepancies and provide consistent expressions for all relevant effective operators involving mesons with masses up to 2 GeV. Moreover, the effective Lagrangians obtained for both the Dirac and Majorana scenarios are made publicly available as FeynRules models so that fully differential event distributions can be easily simulated. As an application of our setup, we numerically compute the expected sensitivity of the DUNE near detector to these heavy neutral leptons.
Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000613016200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4704
Permanent link to this record
 

 
Author (up) DUNE Collaboration (Abud, A.A. et al); Amar, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Hernandez-Garcia, J.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N.
Title DUNE Phase II: scientific opportunities, detector concepts, technological solutions Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 12 Pages P12005 - 91pp
Keywords Cryogenic detectors; Liquid detectors; Neutrino detectors; Noble liquid detectors (scintillation, ionization, double-phase)
Abstract The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a “Module of Opportunity”, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: s.soldner-rembold@imperial.ac.uk;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001413560200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6536
Permanent link to this record
 

 
Author (up) Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J.
Title Effective portals to heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 001 - 45pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos
Abstract The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.
Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001067715500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5697
Permanent link to this record