toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J. url  doi
openurl 
  Title Tensor perturbations in a general class of Palatini theories Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 026 - 16pp  
  Keywords modified gravity; inflation; gravity; dark energy theory  
  Abstract We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the spacetime metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.  
  Address [Jimenez, Jose Beltran] Univ Louvain, Inst Math & Phys, Ctr Cosmol Particle Phys & Phenomenol, B-1318 Louvain, Belgium, Email: jose.beltran@cpt.univ.mrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359215400027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2368  
Permanent link to this record
 

 
Author (up) Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J. url  doi
openurl 
  Title Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-lnfeld Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 004 - 26pp  
  Keywords modified gravity; alternatives to inflation; gravity  
  Abstract We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.  
  Address [Jimenez, Jose Beltran] Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, Inst Math & Phys, B-1348 Louvain La Neuve, Belgium, Email: jose.beltran@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346105300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2039  
Permanent link to this record
 

 
Author (up) Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Ringeval, C. url  doi
openurl 
  Title Cascading dust inflation in Born-lnfeld gravity Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 046 - 30pp  
  Keywords modified gravity; inflation  
  Abstract In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating (lust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefiffly exits when the CR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the BornInfeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bc nee thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary ldnd, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.  
  Address [Jimenez, Jose Beltran] Aix Marseille Univ, Ctr Phys Theor, UMR 7332, F-13288 Marseille, France, Email: jose.beltran@cpt.univ-mrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365821200047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2478  
Permanent link to this record
 

 
Author (up) Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Born-Infeld inspired modifications of gravity Type Journal Article
  Year 2018 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 727 Issue Pages 1-129  
  Keywords Born-Infeld gravity; Astrophysics; Black holes; Cosmology; Early universe; Compact objects; Singularities  
  Abstract General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.  
  Address [Beltran Jimenez, Jose] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: jose.beltran@uam.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000425482900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3497  
Permanent link to this record
 

 
Author (up) Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title On gravitational waves in Born-Infeld inspired non-singular cosmologies Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 029 - 23pp  
  Keywords alternatives to inflation; modified gravity; physics of the early universe; primordial gravitational waves (theory)  
  Abstract We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.  
  Address [Beltran Jimenez, Jose] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France, Email: jose.beltran@uam.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413332400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3337  
Permanent link to this record
 

 
Author (up) Heisenberg, L.; Ramirez, H.; Tsujikawa, S. url  doi
openurl 
  Title Inflation with mixed helicities and its observational imprint on CMB Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 2 Pages 023505 - 14pp  
  Keywords  
  Abstract In the framework of effective field theories with prominent helicity-0 and helicity-1 fields coupled to each other via a dimension-3 operator, we study the dynamics of inflation driven by the helicity-0 mode, with a given potential energy, as well as the evolution of cosmological perturbations, influenced by the presence of a mixing term between both helicities. In this scenario, the temporal component of the helicity-1 mode is an auxiliary field and can be integrated out in terms of the time derivative of the helicity-0 mode, so that the background dynamics effectively reduces to that in single-field inflation modulated by a parameter beta associated to the coupling between helicity-0 and helicity-1 modes. We discuss the evolution of a longitudinal scalar perturbation psi and an inflaton fluctuation delta phi, and we explicitly show that a particular combination of these two, which corresponds to an isocurvature mode, is subject to exponential suppression by the vector mass comparable to the Hubble expansion rate during inflation. Furthermore, we find that the effective single-field description corrected by beta also holds for the power spectrum of curvature perturbations generated during inflation. We compute the standard inflationary observables such as the scalar spectral index n(s), and the tensorto-scalar ratio r and confront several inflaton potentials with the recent observational data provided by Planck 2018. Our results show that the coupling between helicity-0 and helicity-1 modes can lead to a smaller value of the tensor-to-scalar ratio especially for small-field inflationary models, so our scenario exhibits even better compatibility with the current observational data.  
  Address [Heisenberg, Lavinia] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454769400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3864  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva