toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Mena, O. url  doi
openurl 
  Title Impact of the damping tail on neutrino mass constraints Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 8 Pages 083509 - 11pp  
  Keywords  
  Abstract Model-independent mass limits assess the robustness of current cosmological measurements of the neutrino mass scale. Consistency between high-multipole and low-multiple cosmic microwave background observations measuring such scale further valuates the constraining power of present data. We derive here up-to-date limits on neutrino masses and abundances exploiting either the Data Release 4 of the Atacama Cosmology Telescope (ACT) or the South Pole Telescope polarization measurements from SPT-3G, envisaging different nonminimal background cosmologies and marginalizing over them. By combining these high-l observations with supernova Ia, baryon acoustic oscillations (BAO), redshift space distortions (RSD) and a prior on the reionization optical depth fromWMAP data, we find that the marginalized bounds are competitive with those from Planck analyses. We obtain Sigma m(nu) < 0.139 eV and N-eff = 2.82 +/- 0.25 in a dark energy quintessence scenario, both at 95% CL. These limits translate into Sigma m(nu) < 0.20 eV and N-eff = 2.79(-0.28)(+0.30) after marginalizing over a plethora of well-motivated fiducial models. Our findings reassess both the strength and the reliability of cosmological neutrino mass constraints.  
  Address [Di Valentino, Eleonora; Giare, William] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England, Email: e.divalentino@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001157784100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5935  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Schwetz, T. url  doi
openurl 
  Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 40 Issue Pages 101226 - 8pp  
  Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses  
  Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001042929800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5623  
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Melchiorri, A.; Mena, O.; Renzi, F. url  doi
openurl 
  Title Novel model-marginalized cosmological bound on the QCD axion mass Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 10 Pages 103528 - 16pp  
  Keywords  
  Abstract We present model-marginalized limits on mixed hot dark matter scenarios, which consider both thermal neutrinos and thermal QCD axions. A novel aspect of our analyses is the inclusion of small-scale cosmic microwave background (CMB) observations from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), together with those from the Planck satellite and baryon acoustic oscillation (BAO) data. After marginalizing over a number of well-motivated nonminimal background cosmologies, the tightest 95% Confidential Level (CL) upper bound we obtain is 0.21 eV, both for P m nu and ma, from the combination of ACT, Planck and BAO measurements. Restricting the analyses to the standard ?CDM picture, we find P m nu < 0.16 eV and ma < 0.18 eV, both at 95% CL Interestingly, the best background cosmology is never found within the minimal ?CDM plus hot relics, regardless of the datasets exploited in the analyses. The combination of Planck with either BAO, SPT or ACT prefers a universe with a nonzero value of the running in the primordial power spectrum with strong evidence. Small-scale CMB probes, both alone and combined with BAO, either prefer, with substantial evidence, nonflat universes (as in the case of SPT) or a model with a time varying dark energy component (as in the case of ACT).  
  Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000999454300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5554  
Permanent link to this record
 

 
Author Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M. url  doi
openurl 
  Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 046 - 18pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory  
  Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.  
  Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000959757500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5516  
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Mena, O. url  doi
openurl 
  Title Model marginalized constraints on neutrino properties from cosmology Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 4 Pages 043540 - 9pp  
  Keywords  
  Abstract We present robust, model-marginalized limits on both the total neutrino mass (E m1,) and abundances (Neff) to minimize the role of parametrizations, priors and models when extracting neutrino properties from cosmology. The cosmological observations we consider are cosmic microwave background temperature fluctuation and polarization measurements, supernovae Ia luminosity distances, baryon acoustic oscillation observations and determinations of the growth rate parameter from the Data Release 16 of the Sloan Digital Sky Survey IV. The degenerate neutrino mass spectrum (which implies the prior sigma m(1), > 0) is weakly or moderately preferred over the normal and inverted hierarchy possibilities, which imply the priors sigma m(1), > 0.06 and sigma m(1), > 0.1 eV respectively. Concerning the underlying cosmological model, the ACDM minimal scenario is almost always strongly preferred over the possible extensions explored here. The most constraining 95% CL bound on the total neutrino mass in the ACDM + sigma m(1), picture is sigma m(1), < 0.087 eV. The parameter N-eff is restricted to 3.08 +/- 0.17 (68% CL) in the ACDM + Neff model. These limits barely change when considering the ACDM + sigma m(1), + Neff scenario. Given the robustness and the strong constraining power of the cosmological measurements employed here, the model -marginalized posteriors obtained considering a large spectra of nonminimal cosmologies are very close to the previous bounds, obtained within the ACDM framework in the degenerate neutrino mass spectrum. Future cosmological measurements may improve the current Bayesian evidence favoring the degenerate neutrino mass spectra, challenging therefore the consistency between cosmological neutrino mass bounds and oscillation neutrino measurements, and potentially suggesting a more complicated cosmological model and/or neutrino sector.  
  Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000862804700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5375  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva