toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F. url  doi
openurl 
  Title Updated global 3+1 analysis of short-baseline neutrino oscillations Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 135 - 38pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We present the results of an updated fit of short-baseline neutrino oscillation data in the framework of 3+1 active-sterile neutrino mixing. We first consider v(e) and (v) over bar (e) disappearance in the light of the Gallium and reactor anomalies. We discuss the implications of the recent measurement of the reactor (v) over bar (e) spectrum in the NEOS experiment, which shifts the allowed regions of the parameter space towards smaller values of |U-e1|(2). The beta-decay constraints of the Mainz and Troitsk experiments allow us to limit the oscillation length between about 2 cm and 7 m at 3 sigma for neutrinos with an energy of 1 MeV. The corresponding oscillations can be discovered in a model-independent way in ongoing reactor and source experiments by measuring v(e) and (v) over bar (e), disappearance as a function of distance. We then consider the global fit of the data on short-baseline v(mu)((-)) -> v(e)((-)) transitions in the light of the LSND anomaly, taking into account the constraints from v(e)(( )) and v(mu)((-)) disappearance experiments, including the recent data of the MINOS and IceCube experiments. The combination of the NEOS constraints on |U-e4|(2) and the MINOS and IceCube constraints on |U-mu 4|(2) lead to an unacceptable appearance-disappearance tension which becomes tolerable only in a pragmatic fit which neglects the MiniBooNE low-energy anomaly. The minimization of the global chi(2) in the space of the four mixing parameters Delta m(41)(2), |U-e4|(2), |U-mu 4|(2) and |U-4 tau|(2) leads to three allowed regions with narrow Delta m(41)(2) widths at Delta m(41)(2) approximate to 1.7 (best-fit), 1.3 (at 2 sigma), 2.4 (at 3 sigma) eV(2). The effective amplitude of short-baseline v(mu)((-)) -> v(e)((-)) oscillations is limited by 0.00048 less than or similar to sin(2) 2 nu(e mu) less than or similar to 0.0020 at 3 sigma The restrictions of the allowed regions of the mixing parameters with respect to our previous global fits are mainly due to the NEOS constraints. We present a comparison of the allowed regions of the mixing parameters with the sensitivities of ongoing experiments, which show that it is likely that these experiments will determine in a definitive way if the reactor, Gallium and LSND anomalies are due to active-sterile neutrino oscillations or not.  
  Address [Gariazzo, S.] Univ Valencia, CSIC, Inst Fis Corpusc, Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404627200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3190  
Permanent link to this record
 

 
Author (up) Gariazzo, S.; Lopez-Honorez, L.; Mena, O. url  doi
openurl 
  Title Primordial power spectrum features and f(NL) constraints Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 6 Pages 063510 - 12pp  
  Keywords  
  Abstract The simplest models of inflation predict small non-Gaussianities and a featureless power spectrum. However, there exist a large number of well-motivated theoretical scenarios in which large non-Gaussianties could be generated. In general, in these scenarios the primordial power spectrum will deviate from its standard power law shape. We study, in a model-independent manner, the constraints from future large-scale structure surveys on the local non-Gaussianity parameter f(NL) when the standard power law assumption for the primordial power spectrum is relaxed. If the analyses are restricted to the large-scale-dependent bias induced in the linear matter power spectrum by non-Gaussianites, the errors on the f(NL) parameter could be increased by 60% when exploiting data from the future DESI survey, if dealing with only one possible dark matter tracer. In the same context, a nontrivial bias vertical bar delta f(NL)vertical bar similar to 2.5 could be induced if future data are fitted to the wrong primordial power spectrum. Combining all the possible DESI objects slightly ameliorates the problem, as the forecasted errors on f(NL) would be degraded by 40% when relaxing the assumptions concerning the primordial power spectrum shape. Also, the shift on the non-Gaussianity parameter is reduced in this case, vertical bar delta f(NL)vertical bar similar to 1.6. The addition of cosmic microwave background priors ensures robust future f(NL) bounds, as the forecasted errors obtained including these measurements are almost independent on the primordial power spectrum features, and vertical bar delta f(NL)vertical bar similar to 0.2, close to the standard single-field slow-roll paradigm prediction.  
  Address [Gariazzo, Stefano] Univ Turin, Dept Phys, I-10125 Turin, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000360886300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2382  
Permanent link to this record
 

 
Author (up) Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Pastor, S.; Tortola, M. url  doi
openurl 
  Title Non-unitary three-neutrino mixing in the early Universe Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 046 - 18pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory  
  Abstract Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.  
  Address [Gariazzo, Stefano] INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000959757500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5516  
Permanent link to this record
 

 
Author (up) Gariazzo, S.; Mena, O. url  doi
openurl 
  Title Cosmology-marginalized approaches in Bayesian model comparison: The neutrino mass as a case study Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 2 Pages 021301 - 6pp  
  Keywords  
  Abstract We propose here a novel method which singles out the a priori unavoidable dependence on the underlying cosmological model when extracting parameter constraints, providing robust limits which only depend on the considered dataset. Interestingly, when dealing with several possible cosmologies and interpreting the Bayesian preference in terms of the Gaussian statistical evidence, the preferred model is much less favored than when only two cases are compared. As a working example, we apply our approach to the cosmological neutrino mass bounds, which play a fundamental role not only in establishing the contribution of relic neutrinos to the dark matter of the Universe but also in the planning of future experimental searches of the neutrino character and of the neutrino mass ordering.  
  Address [Gariazzo, S.; Mena, O.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456800000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3893  
Permanent link to this record
 

 
Author (up) Gariazzo, S.; Mena, O.; Miralles, V.; Ramirez, H.; Boubekeur, L. url  doi
openurl 
  Title Running of featureful primordial power spectra Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 12 Pages 123534 - 7pp  
  Keywords  
  Abstract Current measurements of the temperature and polarization anisotropy power spectra of the cosmic microwave background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectrum with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. From a model comparison perspective, and assuming that nature has chosen a featureless primordial power spectrum, we find that, while with mock Planck data there is only weak evidence against a model with localized features, upcoming CMB missions may provide compelling evidence against such a nonstandard primordial power spectrum. This evidence could be reinforced if a featureless primordial power spectrum is independently confirmed from bispectrum and/or galaxy clustering measurements.  
  Address [Gariazzo, Stefano; Mena, Olga; Miralles, Victor; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404475200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3186  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva