toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Abramowicz, H. et al; Boronat, M.; Fuster, J.; Garcia, I.; Ros, E.; Vos, M. url  doi
openurl 
  Title Higgs physics at the CLIC electron-positron linear collider Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 7 Pages 475 - 41pp  
  Keywords  
  Abstract The Compact Linear Collider (CLIC) is an option for a future e(+) e(-) collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: root s = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e(+) e(-) -> ZH) and WW-fusion (e(+) e(-) -> H nu(e) (nu) over bar (e)), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma(H), and model-independent determinations of the Higgs couplings. Operation at root s > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e(+) e(-) -> t (t) over barH and e(+) e(-) -> HH nu(e) (nu) over bar (e) allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.  
  Address [Abramowicz, H.; Benhammou, Y.; Borysov, O.; Grefe, C.; Kananov, S.; Levy, A.; Levy, I.; Lukic, S.; Munker, R. M.; Munnich, A.; Pitters, F.; Redford, S.; Roloff, P.; Rosenblat, O.; Shumeiko, N.; Simon, F.; Strube, J.; Thomson, M. A.; Gonzalez, M. Vogel] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel, Email: philipp.roloff@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405802500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3215  
Permanent link to this record
 

 
Author (up) ALEPH, DELPHI, L3 and OPAL Collaborations, LEP Electroweak Working Group (Schael, S. et al); Costa, M.J.; Ferrer, A.; Fuster, J.; Garcia, C.; Oyanguren, A.; Perepelitsa, V.; Salt, J.; Tortosa, P. url  doi
openurl 
  Title Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP Type Journal Article
  Year 2013 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 532 Issue 4 Pages 119-244  
  Keywords Electron-positron physics; Electroweak interactions; Decays of heavy intermediate gauge bosons; Fermion-antifermion production; Precision measurements at W-pair energies; Tests of the Standard Model; Radiative corrections; Effective coupling constants; Neutral weak current; Z boson; W boson; Top quark; Higgs boson  
  Abstract Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma – 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019.  
  Address [Schael, S.] Rhein Westfal TH Aachen, Inst Phys, D-52056 Aachen, Germany  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000328723800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1679  
Permanent link to this record
 

 
Author (up) Alioli, S.; Fernandez, P.; Fuster, J.; Irles Quiles, A.; Moch, S.; Uwer, P.; Vos, M. url  doi
openurl 
  Title A new observable to measure the top-quark mass at hadron colliders Type Journal Article
  Year 2013 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 73 Issue 5 Pages 2438 - 11pp  
  Keywords  
  Abstract A new method to measure the top-quark mass in high energetic hadron collisions is presented. We use theoretical predictions calculated at next-to-leading order accuracy in quantum chromodynamics to study the ( normalized) differential distribution of the t (t) over bar + 1-jet cross section with respect to its invariant mass root s(t (t) over barj). The sensitivity of the method to the top-quark mass together with the impact of various theoretical and experimental uncertainties has been investigated and quantified. The new method allows for a complementary measurement of the top-quark mass parameter and has a high potential to become competitive in precision with respect to established approaches. Furthermore we emphasize that in the proposed method the mass parameter is uniquely defined through one-loop renormalization.  
  Address LBNL, Berkeley, CA 94720 USA, Email: Peter.Uwer@physik.hu-berlin.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000319518900023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1468  
Permanent link to this record
 

 
Author (up) Alioli, S.; Fuster, J.; Garzelli, M.V.; Gavardi, A.; Irles, A.; Melini, D.; Moch, S.O.; Uwer, P.; Voss, K. url  doi
openurl 
  Title Phenomenology of t(t)over-barj plus X production at the LHC Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 146 - 63pp  
  Keywords Specific QCD Phenomenology; Top Quark  
  Abstract We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.  
  Address [Alioli, Simone; Gavardi, Alessandro] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Bicocca, Italy, Email: simone.alioli@unimib.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000801110800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5236  
Permanent link to this record
 

 
Author (up) Alioli, S.; Fuster, J.; Irles Quiles, A.; Moch, S.; Uwer, P.; Vos, M. doi  openurl
  Title A new observable to measure the top quark mass at hadron colliders Type Journal Article
  Year 2012 Publication Pramana-Journal of Physics Abbreviated Journal Pramana-J. Phys.  
  Volume 79 Issue 4 Pages 809-812  
  Keywords Top quark; mass; pole mass; NLO; cross-section; t(t)over-bar plus jet; POWHEG; perturbative QCD  
  Abstract The t (t) over bar + jet + X differential cross-section in proton-proton collisions at 7 TeV centre of mass energy is investigated with respect to its sensitivity to the top quark mass. The analysis includes higher order QCD corrections at NLO. The impact of the renormalization scale (mu(R)), the factorization (mu(F)) scale and of the choice of different proton's PDF (parton distribution function) has been evaluated. In this study it is concluded that differential jet rates offer a promising option for alternative mass measurements of the top quark, with theoretical uncertainties below 1 GeV.  
  Address [Fuster, Juan; Irles, Adrian; Vos, Marcel] Univ Valencia, Ctr Mixte, CSIC, IFIC, E-46071 Valencia, Spain, Email: airqui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Indian Acad Sciences Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4289 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310875900021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1200  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva