toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Pieri, L.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Complementarity of indirect and accelerator dark matter searches Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 5 Pages 055014 - 10pp  
  Keywords  
  Abstract Even if supersymmetric particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the dark matter (DM) in the Universe using LHC data alone. We study the complementarity of LHC and DM indirect searches, working out explicitly the reconstruction of the DM properties for a specific benchmark model in the coannihilation region of a 24-parameters supersymmetric model. Combining mock high-luminosity LHC data with presentday null searches for gamma rays from dwarf galaxies with the Fermi Large Area Telescope, we show that current Fermi Large Area Telescope limits already have the capability of ruling out a spurious wino-like solution which would survive using LHC data only, thus leading to the correct identification of the cosmological solution. We also demonstrate that upcoming Planck constraints on the reionization history will have a similar constraining power and discuss the impact of a possible detection of gamma rays from DM annihilation in the Draco dwarf galaxy with a Cherenkov-Telescope-Array-like experiment. Our results indicate that indirect searches can be strongly complementary to the LHC in identifying the DM particles, even when astrophysical uncertainties are taken into account.  
  Address [Bertone, G.] Univ Amsterdam, GRAPPA Inst, NL-1090 GL Amsterdam, Netherlands  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301647300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 948  
Permanent link to this record
 

 
Author (up) Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Strege, C.; Trotta, R. url  doi
openurl 
  Title Global fits of the cMSSM including the first LHC and XENON100 data Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 015 - 23pp  
  Keywords dark matter theory; supersymmetry and cosmology  
  Abstract We present updated global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including the most recent constraints from the ATLAS and CMS detectors at the LHC, as well as the most recent results of the XENON100 experiment. Our robust analysis takes into account both astrophysical and hadronic uncertainties that enter in the calculation of the rate of WIMP-induced recoils in direct detection experiment. We study the consequences for neutralino Dark Matter, and show that current direct detection data already allow to robustly rule out the so-called Focus Point region, therefore demonstrating the importance of particle astrophysics experiments in constraining extensions of the Standard Model of Particle Physics. We also observe an increased compatibility between results obtained from a Bayesian and a Frequentist statistical perspective. We find that upcoming ton-scale direct detection experiments will probe essentially the entire currently favoured region (at the 99% level), almost independently of the statistical approach used. Prospects for indirect detection of the cMSSM are further reduced.  
  Address [Bertone, Gianfranco] Univ Amsterdam, GRAPPA Inst, NL-1090 GL Amsterdam, Netherlands, Email: gf.bertone@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300403300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 936  
Permanent link to this record
 

 
Author (up) Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Identification of dark matter particles with LHC and direct detection data Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 5 Pages 055008 - 7pp  
  Keywords  
  Abstract Dark matter (DM) is currently searched for with a variety of detection strategies. Accelerator searches are particularly promising, but even if weakly interacting massive particles are found at the Large Hadron Collider (LHC), it will be difficult to prove that they constitute the bulk of the DM in the Universe Omega(DM). We show that a significantly better reconstruction of the DM properties can be obtained with a combined analysis of LHC and direct detection data, by making a simple Ansatz on the weakly interacting massive particles local density rho(0)((chi) over bar1), i.e., by assuming that the local density scales with the cosmological relic abundance, (rho(0)((chi) over bar1)/rho(DM)) = (Omega(0)((chi) over bar1)/Omega(DM)). We demonstrate this method in an explicit example in the context of a 24-parameter supersymmetric model, with a neutralino lightest supersymmetric particle in the stau coannihilation region. Our results show that future ton-scale direct detection experiments will allow to break degeneracies in the supersymmetric parameter space and achieve a significantly better reconstruction of the neutralino composition and its relic density than with LHC data alone.  
  Address [Bertone, G.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281741400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 380  
Permanent link to this record
 

 
Author (up) Strege, C.; Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 030 - 22pp  
  Keywords dark matter theory; dark matter experiments  
  Abstract We present new global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including LHC 1/fb integrated luminosity SUSY exclusion limits, recent LHC 5/fb constraints on the mass of the Higgs boson and XENON100 direct detection data. Our analysis fully takes into account astrophysical and hadronic uncertainties that enter the analysis when translating direct detection limits into constraints on the cMSSM parameter space. We provide results for both a Bayesian and a Frequentist statistical analysis. We find that LHC 2011 constraints in combination with XENON100 data can rule out a significant portion of the cMSSM parameter space. Our results further emphasise the complementarity of collider experiments and direct detection searches in constraining extensions of Standard Model physics. The LHC 2011 exclusion limit strongly impacts on low-mass regions of cMSSM parameter space, such as the stau co-annihilation region, while direct detection data can rule out regions of high SUSY masses, such as the Focus-Point region, which is unreachable for the LHC in the near future. We show that, in addition to XENON100 data, the experimental constraint on the anomalous magnetic moment of the muon plays a dominant role in disfavouring large scalar and gaugino masses. We find that, should the LHC 2011 excess hinting towards a Higgs boson at 126 GeV be confirmed, currently favoured regions of the cMSSM parameter space will be robustly ruled out from both a Bayesian and a profile likelihood statistical perspective.  
  Address [Strege, C.; Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302949600030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1001  
Permanent link to this record
 

 
Author (up) Strege, C.; Bertone, G.; Feroz, F.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Global fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 013 - 40pp  
  Keywords dark matter theory; supersymmetry and cosmology  
  Abstract We present global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM) and the Non-Universal Higgs Model (NUHM), including the most recent CMS constraint on the Higgs boson mass, 5.8 fb(-1) integrated luminosity null Supersymmetry searches by ATLAS, the new LHCb measurement of B R ((B) over bar (s) -> mu(+) mu(-)) and the 7-year WMAP dark matter relic abundance determination. We include the latest dark matter constraints from the XENON100 experiment, marginalising over astrophysical and particle physics uncertainties. We present Bayesian posterior and profile likelihood maps of the highest resolution available today, obtained from up to 350M points. We find that the new constraint on the Higgs boson mass has a dramatic impact, ruling out large regions of previously favoured cMSSM and NUHM parameter space. In the cMSSM, light sparticles and predominantly gaugino-like dark matter with a mass of a few hundred GeV are favoured. The NUHM exhibits a strong preference for heavier sparticle masses and a Higgsino-like neutralino with a mass of 1 TeV. The future ton-scale XENON1T direct detection experiment will probe large portions of the currently favoured cMSSM and NUHM parameter space. The LHC operating at 14 TeV collision energy will explore the favoured regions in the cMSSM, while most of the regions favoured in the NUHM will remain inaccessible. Our best-fit points achieve a satisfactory quality-of-fit, with p-values ranging from 0.21 to 0.35, so that none of the two models studied can be presently excluded at any meaningful significance level.  
  Address Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000318556200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1445  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva