|   | 
Details
   web
Records
Author (up) Fernandez Navarro, M.; King, S.F.; Vicente, A.
Title Tri-unification: a separate SU(5) for each fermion family Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 130 - 32pp
Keywords Grand Unification; Theories of Flavour
Abstract In this paper we discuss SU(5)3 with cyclic symmetry as a possible grand unified theory (GUT). The basic idea of such a tri-unification is that there is a separate SU(5) for each fermion family, with the light Higgs doublet(s) arising from the third family SU(5), providing a basis for charged fermion mass hierarchies. SU(5)3 tri-unification reconciles the idea of gauge non-universality with the idea of gauge coupling unification, opening the possibility to build consistent non-universal descriptions of Nature that are valid all the way up to the scale of grand unification. As a concrete example, we propose a grand unified embedding of the tri-hypercharge model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{U}}{\left(1\right)}_{Y}<^>{3}$$\end{document} based on an SU(5)3 framework with cyclic symmetry. We discuss a minimal tri-hypercharge example which can account for all the quark and lepton (including neutrino) masses and mixing parameters. We show that it is possible to unify the many gauge couplings into a single gauge coupling associated with the cyclic SU(5)3 gauge group, by assuming minimal multiplet splitting, together with a set of relatively light colour octet scalars. We also study proton decay in this example, and present the predictions for the proton lifetime in the dominant e+pi 0 channel.
Address [Navarro, Mario Fernandez; King, Stephen F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, England, Email: Mario.FernandezNavarro@glasgow.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001256025400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6171
Permanent link to this record
 

 
Author (up) Fernandez Navarro, M.; King, S.F.; Vicente, A.
Title Minimal complete tri-hypercharge theories of flavour Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 147 - 36pp
Keywords Theories of Flavour; New Gauge Interactions
Abstract The tri-hypercharge proposal introduces a separate gauged weak hypercharge assigned to each fermion family as the origin of flavour. This is arguably one of the simplest setups for building “gauge non-universal theories of flavour” or “flavour deconstructed theories”. In this paper we propose and study two minimal but ultraviolet complete and renormalisable tri-hypercharge models. We show that both models, which differ only by the heavy messengers that complete the effective theory, are able to explain the observed patterns of fermion masses and mixings (including neutrinos) with all fundamental coefficients being of O(1). In fact, both models translate the complicated flavour structure of the Standard Model into three simple physical scales above electroweak symmetry breaking, completely correlated with each other, that carry meaningful phenomenology. In particular, the heavy messenger sector determines the origin and size of fermion mixing, which controls the size and nature of the flavour-violating currents mediated by the two heavy Z ' gauge bosons of the theory. The phenomenological implications of the two minimal models are compared. In both models the lightest Z ' remains discoverable in dilepton searches at the LHC Run 3.
Address [Navarro, Mario Fernandez] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland, Email: Mario.FernandezNavarro@glasgow.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001350118300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6428
Permanent link to this record