|   | 
Details
   web
Records
Author Miro, C.; Escudero, M.; Nebot, M.
Title How large could the CP violation in neutral B-meson mixing be? Implications for baryogenesis and upcoming searches Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 110 Issue 11 Pages 115033 - 29pp
Keywords
Abstract CP violation in neutral B meson oscillations is an experimental observable that could be directly related to the baryon asymmetry of the Universe through the B-mesogenesis mechanism. As this phenomenon is highly suppressed in the Standard Model, it could also be a sensitive probe for many new physics scenarios that modify neutral meson mixing. Motivated by these facts, and the timely B physics program at the LHC and Belle II, we analyze how large CP violation in the mixing of neutral Bd and Bs meson systems could be. We answer this question, in light of current experimental data, within three different scenarios, namely: (i) generic heavy new physics only affecting the mass mixing Mq12, (ii) vectorlike quark extensions that introduce deviations of 3 x 3 CKM unitarity, and (iii) light new physics modifying the decay mixing Gamma q12. We find that enhancements of the semileptonic asymmetries, that measure the amount of CP violation in mixing, at the level of 10-3 for the Bd system and 10-4 for the Bs system can be achieved within scenarios (i) and (ii), while they are much more suppressed in realistic UV completions triggering scenario (iii). With respect to cosmology, the difficulty of finding large CP asymmetries in our analysis puts the B-mesogenesis mechanism in tension. Finally, we conclude that upcoming experimental searches for CP violation in B meson mixing at LHCb and Belle II are unlikely to detect a new physics signal for the most generic models.
Address [Miro, Carlos; Nebot, Miguel] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain, Email: carlos.miro@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001400806000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6440
Permanent link to this record
 

 
Author Elor, G.; Escudero, M.; Nelson, A.E.
Title Baryogenesis and dark matter from B mesons Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 99 Issue 3 Pages 035031 - 18pp
Keywords
Abstract We present a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral B meson oscillations and subsequent decays. This setup is testable at hadron colliders and B factories. In the early universe, decays of a long lived particle produce B mesons and antimesons out of thermal equilibrium. These mesons/antimesons then undergo CP violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under the baryon number so that the visible sector baryon asymmetry is produced without violating the total baryon number of the Universe. The produced baryon asymmetry will be directly related to the leptonic charge asymmetry in neutral B decays: an experimental observable. Dark matter is stabilized by an unbroken discrete symmetry, and proton decay is simply evaded by kinematics. We will illustrate this mechanism with a model that is unconstrained by dinucleon decay, does not require a high reheat temperature, and would have unique experimental signals-a positive leptonic asymmetry in B meson decays, a new decay of B mesons into a baryon and missing energy, and a new decay of b-flavored baryons into mesons and missing energy. These three observables are testable at current and upcoming collider experiments, allowing for a distinct probe of this mechanism.
Address [Elor, Gilly; Nelson, Ann E.] Univ Washington, Dept Phys, Box 1560, Seattle, WA 98195 USA, Email: gelor@uw.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000459208700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3916
Permanent link to this record
 

 
Author Gariazzo, S.; Escudero, M.; Diamanti, R.; Mena, O.
Title Cosmological searches for a noncold dark matter component Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 96 Issue 4 Pages 043501 - 11pp
Keywords
Abstract We explore an extended cosmological scenario where the dark matter is an admixture of cold and additional noncold species. The mass and temperature of the noncold dark matter particles are extracted from a number of cosmological measurements. Among others, we consider tomographic weak lensing data and Milky Way dwarf satellite galaxy counts. We also study the potential of these scenarios in alleviating the existing tensions between local measurements and cosmic microwave background ( CMB) estimates of the S-8 parameter, with S-8 = sigma(8)root Omega(m), and of the Hubble constant H-0. In principle, a subdominant, noncold dark matter particle with a mass m(X) similar to keV, could achieve the goals above. However, the preferred ranges for its temperature and its mass are different when extracted from weak lensing observations and from Milky Way dwarf satellite galaxy counts, since these two measurements require suppressions of the matter power spectrum at different scales. Therefore, solving simultaneously the CMB-weak lensing tensions and the small scale crisis in the standard cold dark matter picture via only one noncold dark matter component seems to be challenging.
Address [Gariazzo, Stefano; Escudero, Miguel; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000406911700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3236
Permanent link to this record
 

 
Author Sandner, S.; Escudero, M.; Witte, S.J.
Title Precision CMB constraints on eV-scale bosons coupled to neutrinos Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (down) 83 Issue 8 Pages 709 - 12pp
Keywords
Abstract The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalizewith neutrinos via the inverse decay process, v (v) over bar -> X, and suppress neutrino free streaming near recombination – even for couplings as small as lambda(v) similar to O(10(-13)). Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either N-int = 1, 2 or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivatedmodels, such as the singlet majoron model or a light U(1) L-mu- L-t gauge boson, and find that they represent the leading constraints for masses m(X) similar to 1 eV. Finally, we revisit the extent to which neutrinophilic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.
Address [Sandner, Stefan] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001045200700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5608
Permanent link to this record
 

 
Author Escudero, M.; Witte, S.J.
Title A CMB search for the neutrino mass mechanism and its relation to the Hubble tension Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (down) 80 Issue 4 Pages 294 - 10pp
Keywords
Abstract The majoron, a pseudo-Goldstone boson arising from the spontaneous breaking of global lepton number, is a generic feature of many models intended to explain the origin of the small neutrino masses. In this work, we investigate potential imprints in the cosmic microwave background (CMB) arising from massive majorons, should they thermalize with neutrinos after Big Bang Nucleosynthesis via inverse neutrino decays. We show that Planck2018 measurements of the CMB are currently sensitive to neutrino-majoron couplings as small as lambda similar to 10-13, which if interpreted in the context of the type-I seesaw mechanism correspond to a lepton number symmetry breaking scale vL similar to O(100)GeV Additionally, we identify parameter space for which the majoron-neutrino interactions, collectively with an extra contribution to the effective number of relativistic species Neff, can ameliorate the outstanding H0 tension.
Address [Escudero, Miguel] Kings Coll London, Dept Phys, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000523450600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4361
Permanent link to this record
 

 
Author Escudero, M.; Rius, N.; Sanz, V.
Title Sterile neutrino portal to Dark Matter II: exact dark symmetry Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume (down) 77 Issue 6 Pages 397 - 11pp
Keywords
Abstract We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.
Address [Escudero, Miguel; Rius, Nuria] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000403504200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3171
Permanent link to this record
 

 
Author Escudero, M.; Berlin, A.; Hooper, D.; Lin, M.X.
Title Toward (finally!) ruling out Z and Higgs mediated dark matter models Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 12 Issue 12 Pages 029 - 21pp
Keywords dark matter theory; dark matter experiments
Abstract In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we fi nd that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Z mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m(D M) similar or equal to m(Z)/2) or greater than 200 GeV, or with a vector coupling and with m(DM) > 6TeV. Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m(DM) similar or equal to m(H) /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.
Address [Escudero, Miguel] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000398395400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3040
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Pavon, J.; Rius, N.; Sandner, S.
Title Relaxing cosmological neutrino mass bounds with unstable neutrinos Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 12 Issue 12 Pages 119 - 44pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics
Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).
Address [Escudero, Miguel] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000601400500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4661
Permanent link to this record
 

 
Author Escudero, M.; Witte, S.J.; Hooper, D.
Title Hidden sector dark matter and the Galactic Center gamma-ray excess: a closer look Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 11 Issue 11 Pages 042 - 29pp
Keywords dark matter experiments; dark matter theory
Abstract Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios.
Address [Escudero, Miguel; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000417561900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3412
Permanent link to this record
 

 
Author Blanco, C.; Escudero, M.; Hooper, D.; Witte, S.J.
Title Z ' mediated WIMPs: dead, dying, or soon to be detected? Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 11 Issue 11 Pages 024 - 48pp
Keywords dark matter theory; dark matter detectors; dark matter experiments
Abstract Although weakly interacting massive particles (WIMPs) have long been among the most studied and theoretically attractive classes of candidates for the dark matter of our universe, the lack of their detection in direct detection and collider experiments has begun to dampen enthusiasm for this paradigm. In this study, we set out to appraise the status of the WIMP paradigm, focusing on the case of dark matter candidates that interact with the Standard Model through a new gauge boson. After considering a wide range of Z' mediated dark matter models, we quantitatively evaluate the fraction of the parameter space that has been excluded by existing experiments, and that is projected to fall within the reach of future direct detection experiments. Despite the existence of stringent constraints, we find that a sizable fraction of this parameter space remains viable. More specifically, if the dark matter is a Majorana fermion, we find that an order one fraction of the parameter space is in many cases untested by current experiments. Future direct detection experiments with sensitivity near the irreducible neutrino floor will be able to test a significant fraction of the currently viable parameter space, providing considerable motivation for the next generation of direct detection experiments.
Address [Blanco, Carlos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA, Email: carlosblanco2718@uchicago.ed;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000507259700021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4255
Permanent link to this record