toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Baru, V.; Dong, X.K.; Du, M.L.; Filin, A.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q. url  doi
openurl 
  Title Effective range expansion for narrow near-threshold resonances Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 833 Issue Pages 137290 - 7pp  
  Keywords Effective range expansion; Exotic states; Tetraquarks; Hadronic molecules  
  Abstract We discuss some general features of the effective range expansion, the content of its parameters with respect to the nature of the pertinent near-threshold states and the necessary modifications in the presence of coupled channels, isospin violations and unstable constituents. As illustrative examples, we analyse the properties of the chi(c1)(3872) and T-cc(+) states supporting the claim that these exotic states have a predominantly molecular nature.  
  Address [Baru, Vadim; Filin, Arseniy] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany, Email: vadimb@tp2.rub.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000837882700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5327  
Permanent link to this record
 

 
Author (up) Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Yao, D.L. url  doi
openurl 
  Title Towards a new paradigm for heavy-light meson spectroscopy Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 9 Pages 094018 - 8pp  
  Keywords  
  Abstract Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451000200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3817  
Permanent link to this record
 

 
Author (up) Du, M.L.; Albaladejo, M.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Combined analysis of the Z(c)(3900) and the Z(cs)(3985) exotic states Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 7 Pages 074018 - 20pp  
  Keywords  
  Abstract We have performed a combined analysis of the BESIII data for both the Z(c)(3900) and Z(cs)(3985) structures, assuming that the latter is an SU(3) flavor partner of the former one. We have improved on the previous analysis of Albaladejo et al. [Phys. Lett. B 755, 337 (2016)] by computing the amplitude for the D-1(D) over barD* triangle diagram considering both D- and S-wave D1D*x couplings. We have also investigated effects from SU(3) light-flavor violations, which are found to be moderate and of the order of 20%. The successful reproduction of the BESIII spectra, in both the hidden-charm and hidden-charm strange sectors, strongly supports that the Z(cs)(3985) and Z(c)(3900) are SU(3) flavor partners placed in the same octet multiplet. The best results are obtained when an energy-dependent term in the diagonal D(*) (D) over bar ((s))((*)) interaction is included, leading to resonances (poles above the thresholds) to describe these exotic states. We have also made predictions for the isovector Z*c and isodoublet Z*(cs), D*(D) over bar*, and D*??D*s molecules, with J(PC) = 1(+-) and J(P) = 1(+), respectively. These states would be heavy-quark spin symmetry (HQSS) partners of the Z(c) and Z(cs). Besides the determination of the masses and widths of the Z(c)(3900) and Z(cs)(3985), we also predict those of the Z*(c) and Z*(cs) resonances.  
  Address [Du, Meng-Lin; Albaladejo, Miguel; Nieves, Juan] UV, CSIC, Ctr Mixto, Inst Invest Paterna,Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000809663000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5259  
Permanent link to this record
 

 
Author (up) Du, M.L.; Baru, V.; Dong, X.K.; Filin, A.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q. url  doi
openurl 
  Title Coupled-channel approach to T-cc(+) including three-body effects Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 1 Pages 014024 - 19pp  
  Keywords  
  Abstract A coupled-channel approach is applied to the charged tetraquark state T-cc(+). recently discovered by the LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in the three-body (DD0)-D-0 pi(+) channel. Special attention is paid to the three-body dynamics in the T-cc(+) due to the finite life time of the D*. An approach to the T-cc(+) is argued to be self-consistent only if both manifestations of the three-body dynamics, the pion exchange between the D and D* mesons and the finite D* width, are taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially important to precisely extract the pole position in the complex energy plane whose imaginary part is very sensitive to the details of the coupled-channel scheme employed. The (DD0)-D-0 and (DD+)-D-0 invariant mass distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy expansion of the D* D scattering amplitude is performed and the low-energy constants (the scattering length and effective range) are extracted. The compositeness parameter of the T-cc(+) is found to be close to unity, which implies that the T-cc(+) is a hadronic molecule generated by the interactions in the D*D-+(0) and D*D-0(+) channels. Employing heavy-quark spin symmetry, an isoscalar D* D* molecular partner of the T-cc(+) with J(P) = 1(+ )is predicted under the assumption that the DD* -D* D* coupled-channel effects can be neglected.  
  Address [Du, Meng-Lin; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000747425300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5096  
Permanent link to this record
 

 
Author (up) Du, M.L.; Baru, V.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Oller, J.A.; Wang, Q. url  doi
openurl 
  Title Revisiting the nature of the P-c pentaquarks Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 157 - 50pp  
  Keywords QCD Phenomenology; Non-perturbative renormalization  
  Abstract The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: du@hiskp.uni-bonn.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000693090600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4958  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva