toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author KM3NeT Collaboration (Ageron, M. et al); Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 2 Pages 99 - 11pp  
  Keywords  
  Abstract KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV-PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232-3386 m seawater depth is obtained.  
  Address (up) [Ageron, M.; Bertin, V.; Billault, M.; Brunner, J.; Busto, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Domi, A.; Dornic, D.; Enzenhofer, A.; Henry, S.; Keller, P.; Lamare, P.; Laurence, J.; Lincetto, M.; Maggi, G.; Perrin-Terrin, M.; Quinn, L.; Royon, J.; Salvadori, I.; Tezier, D.; Theraube, S.; Zaborov, D.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: simone.biagi@infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000514581600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4302  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 180 - 26pp  
  Keywords Neutrino Detectors and Telescopes (experiments); Oscillation  
  Abstract KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles theta(14), theta(24), theta(34) and the effective angle theta(mu e), over a broad range of mass squared difference Delta m(41)(2) similar to [10(-5), 10] eV(2), allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: jcoelho@apc.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000710339200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5010  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 4 Pages 317 - 16pp  
  Keywords  
  Abstract The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV-PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: lincetto@astro.ruhr-uni-bochum.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000780973500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5197  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Nanobeacon: A time calibration device for the KM3NeT neutrino telescope Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1040 Issue Pages 167132 - 13pp  
  Keywords Time calibration; Instrumentation; Neutrino telescopes  
  Abstract The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. A relative time synchronisation between photomultipliers of the nanosecond order needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 & nbsp;Nanobeacons have been already produced. The characterisation of the optical pulse and the wavelength emission profile of the devices is critical for the time calibration. The optical pulse rise time has been quantified as less than 3 ns, while the Full Width Half Maximum is less than 6 ns. The wavelength drift, due to a variation of the supply voltage, has also been qualified as lower than 10 nm for the full range of the Nanobeacon. In this paper, more details about the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sagreus@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000841467100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5342  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 1 Pages 26 - 16pp  
  Keywords  
  Abstract The next generation of water Cherenkov neutrino telescopes in the Mediterranean Sea are under construction offshore France (KM3NeT/ORCA) and Sicily (KM3NeT/ARCA). The KM3NeT/ORCA detector features an energy detection threshold which allows to collect atmospheric neutrinos to study flavour oscillation. This paper reports the KM3NeT/ORCA sensitivity to this phenomenon. The event reconstruction, selection and classification are described. The sensitivity to determine the neutrino mass ordering was evaluated and found to be 4.4 sigma if the true ordering is normal and 2.3 sigma if inverted, after 3 years of data taking. The precision to measure Delta m(32)(2) and theta(23) were also estimated and found to be 85.10(-6) eV(2) and (<b>(+1.9)(-3.1))degrees for normal neutrino mass ordering and, 75.10(-6) eV(2) and ((+2.0)(-7.0))degrees for inverted ordering. Finally, a unitarity test of the leptonic mixing matrix by measuring the rate of tau neutrinos is described. Three years of data taking were found to be sufficient to exclude (nu)over-left-right-arrow tau event rate variations larger than 20% at 3 sigma level.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: steffen.hallmann@fau.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000741416700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5081  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The KM3NeT multi-PMT optical module Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 7 Pages P07038 - 28pp  
  Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Neutrino detectors  
  Abstract The optical module of the KM3NeT neutrino telescope is an innovative multi-faceted large area photodetection module. It contains 31 three-inch photomultiplier tubes in a single 0.44 m diameter pressure-resistant glass sphere. The module is a sensory device also comprising calibration instruments and electronics for power, readout and data acquisition. It is capped with a breakout-box with electronics for connection to an electro-optical cable for power and long-distance communication to the onshore control station. The design of the module was qualified for the first time in the deep sea in 2013. Since then, the technology has been further improved to meet requirements of scalability, cost-effectiveness and high reliability. The module features a sub-nanosecond timing accuracy and a dynamic range allowing the measurement of a single photon up to a cascade of thousands of photons, suited for the measurement of the Cherenkov radiation induced in water by secondary particles from interactions of neutrinos with energies in the range of GeV to PeV. A distributed production model has been implemented for the delivery of more than 6000 modules in the coming few years with an average production rate of more than 100 modules per month. In this paper a review is presented of the design of the multi-PMT KM3NeT optical module with a proven effective background suppression and signal recognition and sensitivity to the incoming direction of photons.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: km3net-pc@km3net.de  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898568200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5449  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 055 - 31pp  
  Keywords Neutrino Detectors and Telescopes (experiments); Oscillation  
  Abstract This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential of either detector, beyond simply adding their neutrino mass ordering sensitivities, by removing a degeneracy in the determination of Delta M-31(2) between the two experiments when assuming the wrong ordering. The study is based on the latest projected performances for JUNO, and on simulation tools using a full Monte Carlo approach to the KM3NeT/ORCA response with a careful assessment of its energy systematics. From this analysis, a 5 sigma determination of the neutrino mass ordering is expected after 6 years of joint data taking for any value of the oscillation parameters. This sensitivity would be achieved after only 2 years of joint data taking assuming the current global best-fit values for those parameters for normal ordering.  
  Address (up) [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Italy, Italy, Email: nchau@apc.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000767221800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5181  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Barrios-Marti, J.; Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Lotze, M.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources Type Journal Article
  Year 2019 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 111 Issue Pages 100-110  
  Keywords Astrophysical neutrino sources; Cherenkov underwater neutrino telescope; KM3NeT  
  Abstract KM3NeT will be a network of deep-sea neutrino telescopes in the Mediterranean Sea. The KM3NeT/ARCA detector, to be installed at the Capo Passero site (Italy), is optimised for the detection of high-energy neutrinos of cosmic origin. Thanks to its geographical location on the Northern hemisphere, KM3NeT/ARCA can observe upgoing neutrinos from most of the Galactic Plane, including the Galactic Centre. Given its effective area and excellent pointing resolution, KM3NeT/ARCA will measure or significantly constrain the neutrino flux from potential astrophysical neutrino sources. At the same time, it will test flux predictions based on gamma-ray measurements and the assumption that the gamma-ray flux is of hadronic origin. Assuming this scenario, discovery potentials and sensitivities for a selected list of Galactic sources and to generic point sources with an E(-2 )spectrum are presented. These spectra are assumed to be time independent. The results indicate that an observation with 3 sigma significance is possible in about six years of operation for the most intense sources, such as Supernovae Remnants RX J1713.7-3946 and Vela Jr. If no signal will be found during this time, the fraction of the gamma-ray flux coming from hadronic processes can be constrained to be below 50% for these two objects.  
  Address (up) [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.; Tatone, F.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sapienza@lns.infn.it;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470047300008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4047  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The KM3NeT potential for the next core-collapse supernova observation with neutrinos Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 5 Pages 445 - 19pp  
  Keywords  
  Abstract The KM3NeT research infrastructure is under construction in the Mediterranean Sea. It consists of two water Cherenkov neutrino detectors, ARCA and ORCA, aimed at neutrino astrophysics and oscillation research, respectively. Instrumenting a large volume of sea water with similar to 6200 optical modules comprising a total of similar to 200,000 photomultiplier tubes, KM3NeT will achieve sensitivity to similar to 10 MeV neutrinos from Galactic and near-Galactic core-collapse supernovae through the observation of coincident hits in photomultipliers above the background. In this paper, the sensitivity of KM3NeT to a supernova explosion is estimated from detailed analyses of background data from the first KM3NeT detection units and simulations of the neutrino signal. The KM3NeT observational horizon (for a 5 sigma discovery) covers essentially the Milky-Way and for the most optimistic model, extends to the Small Magellanic Cloud (similar to 60 kpc). Detailed studies of the time profile of the neutrino signal allow assessment of the KM3NeT capability to determine the arrival time of the neutrino burst with a few milliseconds precision for sources up to 5-8 kpc away, and detecting the peculiar signature of the standing accretion shock instability if the core-collapse supernova explosion happens closer than 3-5 kpc, depending on the progenitor mass. KM3NeT's capability to measure the neutrino flux spectral parameters is also presented.  
  Address (up) [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: mcolomer@apc.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000671013200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4894  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The Control Unit of the KM3NeT Data Acquisition System Type Journal Article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 256 Issue Pages 107433 - 16pp  
  Keywords KM3NeT; Data acquisition control; Neutrino detector; Astroparticle detector; 07.05.Hd; 29.85.Ca  
  Abstract The KM3NeT Collaboration runs a multi-site neutrino observatory in the Mediterranean Sea. Water Cherenkov particle detectors, deep in the sea and far off the coasts of France and Italy, are already taking data while incremental construction progresses. Data Acquisition Control software is operating off-shore detectors as well as testing and qualification stations for their components. The software, named Control Unit, is highly modular. It can undergo upgrades and reconfiguration with the acquisition running. Interplay with the central database of the Collaboration is obtained in a way that allows for data taking even if Internet links fail. In order to simplify the management of computing resources in the long term, and to cope with possible hardware failures of one or more computers, the KM3NeT Control Unit software features a custom dynamic resource provisioning and failover technology, which is especially important for ensuring continuity in case of rare transient events in multi-messenger astronomy. The software architecture relies on ubiquitous tools and broadly adopted technologies and has been successfully tested on several operating systems.  
  Address (up) [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: cbozza@unisa.it;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000590251400011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4616  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva