toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Abbar, S.; Capozzi, F. url  doi
openurl 
  Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 051 - 13pp  
  Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas  
  Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.  
  Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776551600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5186  
Permanent link to this record
 

 
Author (up) Andringa, S. et al; Capozzi, F.; Sorel, M. url  doi
openurl 
  Title Low-energy physics in neutrino LArTPCs Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 3 Pages 033001 - 60pp  
  Keywords physics; neutrino; LArTPC  
  Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.  
  Address [Andringa, S.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal, Email: blittlej@iit.edu;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000931327500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5502  
Permanent link to this record
 

 
Author (up) Baum, S.; Capozzi, F.; Horiuchi, S. url  doi
openurl 
  Title Rocks, water, and noble liquids: Unfolding the flavor contents of supernova neutrinos Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 12 Pages 123008 - 14pp  
  Keywords  
  Abstract Measuring core-collapse supernova neutrinos, both from individual supernovae within the Milky Way and from past core collapses throughout the Universe (the diffuse supernova neutrino background, or DSNB), is one of the main goals of current and next generation neutrino experiments. Detecting the heavy -lepton flavor (muon and tau types, collectively nu x) component of the flux is particularly challenging due to small statistics and large backgrounds. While the next galactic neutrino burst will be observed in a plethora of neutrino channels, allowing us to measure a small number of nu x events, only upper limits are anticipated for the diffuse nu x flux even after decades of data taking with conventional detectors. However, paleo detectors could measure the time-integrated flux of neutrinos from galactic core-collapse supernovae via flavor-blind neutral current interactions. In this work, we show how combining a measurement of the average galactic core-collapse supernova flux with paleo detectors and measurements of the DSNB electron -type neutrino fluxes with the next-generation water Cherenkov detector Hyper-Kamiokande and the liquid noble gas detector DUNE will allow to determine the mean supernova nu x flux parameters with precision of order ten percent. Realizing this potential requires both the cosmic supernova rate out to z -1 and the integrated Galactic supernova rate over the last-1 Gyr to be established at the-10% level.  
  Address [Baum, Sebastian] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA, Email: sbaum@stanford.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000897104600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5439  
Permanent link to this record
 

 
Author (up) Capozzi, F.; Chakraborty, M.; Chakraborty, S.; Sen, M. url  doi
openurl 
  Title Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 8 Pages 083011 - 9pp  
  Keywords  
  Abstract In the dense supernova environment, neutrinos can undergo fast flavor conversions which depend on the large neutrino-neutrino interaction strength. It has been recently shown that both their presence and outcome can be affected when passing from the commonly used three neutrino species approach to the more general one with six species. Here, we build up on a previous work performed on this topic and perform a numerical simulation of flavor evolution in both space and time, assuming six neutrino species. We find that the results presented in our previous work remain qualitatively the same even for flavor evolution in space and time. This emphasizes the need for going beyond the simplistic approximation with three species when studying fast flavor conversions.  
  Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, CSIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000875132200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5396  
Permanent link to this record
 

 
Author (up) Capozzi, F.; Ferreira, R.Z.; Lopez-Honorez, L.; Mena, O. url  doi
openurl 
  Title CMB and Lyman-alpha constraints on dark matter decays to photons Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 060 - 23pp  
  Keywords reionization; axions; cosmological parameters from CMBR; dark matter theory  
  Abstract Dark matter energy injection in the early universe modifies both the ionization history and the temperature of the intergalactic medium. In this work, we improve the CMB bounds on sub-keV dark matter and extend previous bounds from Lyman-& alpha; observations to the same mass range, resulting in new and competitive constraints on axion-like particles (ALPs) decaying into two photons. The limits depend on the underlying reionization history, here accounted self-consistently by our modified version of the publicly available DarkHistory and CLASS codes. Future measurements such as the ones from the CMB-S4 experiment may play a crucial, leading role in the search for this type of light dark matter candidates.  
  Address [Capozzi, Francesco] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy, Email: francesco.capozzi@univaq.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001025410500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5584  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva