toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Baglio, J.; Campanario, F.; Glaus, S.; Mühlleitner, M.; Ronca, J.; Spira, M. url  doi
openurl 
  Title Full NLO QCD predictions for Higgs-pair production in the 2-Higgs-doublet model Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 9 Pages 826 - 14pp  
  Keywords  
  Abstract After the discovery of the Higgs boson in 2012 at the CERN Large Hadron Collider (LHC), the study of its properties still leaves room for an extended Higgs sector with more than one Higgs boson. 2-Higgs doublet models (2HDMs) are well-motivated extensions of the Standard Model (SM) with five physical Higgs bosons: two CP-even states h and H, one CP-odd state A, and two charged states H-+/-. In this letter, we present the calculation of the full next-to-leading order (NLO) QCD corrections to hH and AA production at the LHC in the 2HDM at small values of the ratio of the vacuum expectation values, tan beta, including the exact top-mass dependence everywhere in the calculation. Using techniques applied in the NLO QCD SM Higgs pair production calculation, we present results for the total cross section as well as for the Higgs-pair-mass distribution at the LHC. We also provide the top-quark scale and scheme uncertainties which are found to be sizeable.  
  Address [Baglio, J.] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001188035600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5993  
Permanent link to this record
 

 
Author (up) Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M. url  doi
openurl 
  Title gg -> HH: Combined uncertainties Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 5 Pages 056002 - 5pp  
  Keywords  
  Abstract In this paper we discuss the combination of the usual renormalization and factorization scale uncertainties of Higgs-pair production via gluon fusion with the novel uncertainties originating from the scheme and scale choice of the virtual top mass. Moreover, we address the uncertainties related to the top-mass definition for different values of the trilinear Higgs coupling and their combination with the other uncertainties.  
  Address [Baglio, J.] CERN, Theory Phys Dept, CH-1211 Geneva 23, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000627571800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4762  
Permanent link to this record
 

 
Author (up) Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M.; Streicher, J. url  doi
openurl 
  Title Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 181-50pp  
  Keywords Higgs Physics; Perturbative QCD  
  Abstract Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.  
  Address [Baglio, Julien] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531394200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4391  
Permanent link to this record
 

 
Author (up) Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Spira, M.; Streicher, J. url  doi
openurl 
  Title Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 6 Pages 459 - 9pp  
  Keywords  
  Abstract We present the calculation of the full next-to-leading order (NLO) QCD corrections to Higgs boson pair production via gluon fusion at the LHC, including the exact top-mass dependence in the two-loop virtual and one-loop real corrections. This is the first independent cross-check of the NLO QCD corrections presented in the literature before. Our calculation relies on numerical integrations of Feynman integrals, stabilised with integration-by-parts and a Richardson extrapolation to the narrow width approximation. We present results for the total cross section as well as for the invariant Higgs-pair-mass distribution at the LHC, including for the first time a study of the uncertainty due to the scheme and scale choice for the top mass in the loops.  
  Address [Baglio, J.; Streicher, J.] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany, Email: julien.baglio@uni-tuebingen.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000469782000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4037  
Permanent link to this record
 

 
Author (up) Bozzi, G.; Campanario, F.; Hankele, V.; Zeppenfeld, D. url  doi
openurl 
  Title Next-to-leading order QCD corrections to W+W-gamma and ZZ gamma production with leptonic decays Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 9 Pages 094030 - 7pp  
  Keywords  
  Abstract The computation of the O(alpha(s)) QCD corrections to the cross sections for W+W-gamma and ZZ gamma production in hadronic collisions is presented. We consider the case of a real photon in the final state, but include full leptonic decays of the W and Z bosons. Numerical results for the LHC and the Tevatron are obtained through a fully flexible parton level Monte Carlo program based on the structure of the VBFNLO program, allowing an easy implementation of arbitrary cuts and distributions. We show the dependence on scale variations of the integrated cross sections and provide evidence that next-to-leading order (NLO) QCD corrections strongly modify the LO predictions for observables at the LHC both in magnitude and in shape.  
  Address [Bozzi, G.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278145100048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 439  
Permanent link to this record
 

 
Author (up) Campanario, F.; Czyz, H.; Gluza, J.; Gunia, M.; Riemann, T.; Rodrigo, G.; Yundin, V. url  doi
openurl 
  Title Complete QED NLO contributions to the reaction e(+)e(-) -> mu(+)mu(-)gamma and their implementation in the event generator PHOKHARA Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 114 - 27pp  
  Keywords B-Physics; Standard Model  
  Abstract KLOE and Babar have an observed discrepancy of 2% to 5% in the invariant pion pair production cross section. These measurements are based on approximate NLO mu(+)mu(-)gamma cross section predictions of the Monte Carlo event generator PHOKHARA7.0. In this article, the complete NLO radiative corrections to mu(+)mu(-)gamma production are calculated and implemented in the Monte Carlo event generator PHOKHARA9.0. Numerical reliability is guaranteed by two independent approaches to the real and the virtual corrections. The novel features include the contribution of pentagon diagrams in the virtual corrections, which form a gauge-invariant set when combined with their box diagram partners. They may contribute to certain distributions at the percent level. Also the real emission was complemented with two-photon final state emission contributions not included in the generator PHOKHARA7.0. We demonstrate that the numerical influence reaches, for realistic charge-averaged experimental setups, not more than 0.1% at KLOE and 0.3% at BaBar energies. As a result, we exclude the approximations in earlier versions of PHOKHARA as origin of the observed experimental discrepancy.  
  Address [Campanario, F.; Rodrigo, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46980, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332506600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1725  
Permanent link to this record
 

 
Author (up) Campanario, F.; Czyz, H.; Gluza, J.; Jelinski, T.; Rodrigo, G.; Tracz, S.; Zhuridov, D. url  doi
openurl 
  Title Standard model radiative corrections in the pion form factor measurements do not explain the a(mu) anomaly Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 7 Pages 076004 - 5pp  
  Keywords  
  Abstract In this paper, we address the question of whether the almost four standard deviations difference between theory and experiment for the muon anomalous magnetic moment a(mu) can be explained as a higher-order Standard Model perturbation effect in the pion form factor measurements. This question has, until now, remained open, obscuring the source of discrepancies between the measurements. We calculate the last radiative corrections for the extraction of the pion form factor, which were believed to be potentially substantial enough to explain the data within the Standard Model. We find that the corrections are too small to diminish existing discrepancies in the determination of the pion form factor for different kinematical configurations of low-energy BABAR, BES-III and KLOE experiments. Consequently, they cannot noticeably change the previous predictions for a(mu) and decrease the deviations between theory and direct measurements. To solve the above issues, new data and better understanding of low-energy experimental setups are needed, especially as new direct a(mu) measurements at Fermilab and J-PARC will provide new insights and substantially shrink the experimental error.  
  Address [Campanario, Francisco; Rodrigo, German; Tracz, Szymon] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: henryk.czyz@us.edu.pl  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000489577800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4168  
Permanent link to this record
 

 
Author (up) Campanario, F.; Figy, T.M.; Platzer, S.; Rauch, M.; Schichtel, P.; Sjodahl, M. url  doi
openurl 
  Title Stress testing the vector-boson-fusion approximation in multijet final states Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 3 Pages 033003 - 7pp  
  Keywords  
  Abstract We consider electroweak Higgs plus three jets production at NLO QCD beyond strict VBF acceptance cuts. We investigate, for the first time, how accurate the VBF approximation is in these regions and within perturbative uncertainties by a detailed comparison of full and approximate calculations. We find that a rapidity gap between the tagging jets guarantees a good approximation, while an invariant mass cut alone is not sufficient, which needs to be confronted with experimental choices. We also find that a significant part of the QCD corrections can be attributed to Higgs-Strahlungs-type topologies.  
  Address [Campanario, Francisco] Univ Valencia, Div Theory, IFIC, CSIC, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000442476300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3700  
Permanent link to this record
 

 
Author (up) Campanario, F.; Figy, T.M.; Platzer, S.; Sjodahl, M. url  doi
openurl 
  Title Electroweak Higgs Boson Plus Three Jet Production at Next-to-Leading-Order QCD Type Journal Article
  Year 2013 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 111 Issue 21 Pages 211802 - 4pp  
  Keywords  
  Abstract We calculate next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production. Both vector boson fusion (VBF) and Higgs-strahlung type contributions are included along with all interferences. The calculation is implemented within the MATCHBOX NLO framework of the HERWIG++ event generator.  
  Address [Campanario, Francisco] Univ Valencia, CSIC, IFIC, Div Theory, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327245100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1657  
Permanent link to this record
 

 
Author (up) Campanario, F.; Kaiser, N.; Zeppenfeld, D. url  doi
openurl 
  Title W gamma production in vector boson fusion at NLO in QCD Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 1 Pages 014009 - 5pp  
  Keywords  
  Abstract The next-to-leading order QCD corrections to W-+/-gamma. production in association with two jets via vector boson fusion are calculated, including the leptonic decay of the W with full off-shell effects and spin correlations. The process lends itself to a test of quartic gauge couplings. The next-to-leading order corrections reduce the scale uncertainty significantly and show a nontrivial phase space dependence.  
  Address [Campanario, Francisco] Univ Valencia CSIC, IFIC, Div Theory, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331841100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1714  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva