|
Records |
Links |
|
Author |
DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
107 |
Issue |
9 |
Pages |
092012 - 22pp |
|
|
Keywords |
|
|
|
Abstract |
Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons. |
|
|
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:001010953400003 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5588 |
|
Permanent link to this record |
|
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Physical Review D |
Abbreviated Journal |
Phys. Rev. D |
|
|
Volume |
105 |
Issue |
7 |
Pages |
072006 - 32pp |
|
|
Keywords |
|
|
|
Abstract |
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4 sigma (5 sigma) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3 sigma for almost all true delta(CP) values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3 sigma level with a 100 kt-MW-CY exposure for the maximally CP-violating values delta(CP) = +/-pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest. |
|
|
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: cwilkinson@lbl.gov |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2470-0010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000809663000001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5260 |
|
Permanent link to this record |
|
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
|
|
Volume |
17 |
Issue |
1 |
Pages |
P01005 - 111pp |
|
|
Keywords |
Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC) |
|
|
Abstract |
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. |
|
|
Address |
[Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOP Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000757487100001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5131 |
|
Permanent link to this record |
|
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC |
Type |
Journal Article |
|
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
|
|
Volume |
82 |
Issue |
7 |
Pages |
618 - 29pp |
|
|
Keywords |
|
|
|
Abstract |
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. |
|
|
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000826161300003 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5293 |
|
Permanent link to this record |
|
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
|
|
Title |
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network |
Type |
Journal Article |
|
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
|
|
Volume |
82 |
Issue |
10 |
Pages |
903 - 19pp |
|
|
Keywords |
|
|
|
Abstract |
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation. |
|
|
Address |
[Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1434-6044 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000866503200001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5386 |
|
Permanent link to this record |
|
|
|
|
Author |
Norena, J.; Verde, L.; Barenboim, G.; Bosch, C. |
|
|
Title |
Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
08 |
Issue |
8 |
Pages |
019 - 16pp |
|
|
Keywords |
redshift surveys; cosmological parameters from LSS; inflation |
|
|
Abstract |
We consider whether the non-Gaussian scale-dependent halo bias can be used not only to constrain the local form of non-Gaussianity but also to distinguish among different shapes. In particular, we ask whether it can constrain the behavior of the primordial three-point function in the squeezed limit where one of the momenta is much smaller than the other two. This is potentially interesting since the observation of a three-point function with a squeezed limit that does not go like the local nor equilateral templates would be a signal of non-trivial dynamics during inflation. To this end we use the quasi-single field inflation model of Chen & Wang [1, 2] as a representative two-parameter model, where one parameter governs the amplitude of non-Gaussianity and the other the shape. We also perform a model-independent analysis by parametrizing the scale-dependent bias as a power-law on large scales, where the power is to be constrained from observations. We find that proposed large-scale structure surveys (with characteristics similar to the dark energy task force stage IV surveys) have the potential to distinguish among the squeezed limit behavior of different bispectrum shapes for a wide range of fiducial model parameters. Thus the halo bias can help discriminate between different models of inflation. |
|
|
Address |
[Norena, Jorge; Verde, Licia] Univ Barcelona ICC UB IEEC, Inst Ciencias Cosmos, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000308800700020 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
no |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
1189 |
|
Permanent link to this record |
|
|
|
|
Author |
Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J. |
|
|
Title |
How to relax the cosmological neutrino mass bound |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Journal of Cosmology and Astroparticle Physics |
Abbreviated Journal |
J. Cosmol. Astropart. Phys. |
|
|
Volume |
04 |
Issue |
4 |
Pages |
049 - 18pp |
|
|
Keywords |
neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS |
|
|
Abstract |
We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two. |
|
|
Address |
[Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1475-7516 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000466578400003 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4001 |
|
Permanent link to this record |