toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R. url  doi
openurl 
  Title Gray-body factor and infrared divergences in 1D BEC acoustic black holes Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 10 Pages 104044 - 6pp  
  Keywords  
  Abstract It is shown that the gray-body factor for a one-dimensional elongated Bose-Einstein condensate (BEC) acoustic black hole with one horizon does not vanish in the low-frequency (omega -> 0) limit. This implies that the analog Hawking radiation is dominated by the emission of an infinite number (1/omega) of soft phonons in contrast with the case of a Schwarzschild black hole where the gray-body factor vanishes as omega -> 0 and the spectrum is not dominated by low-energy particles. The infrared behaviors of certain correlation functions are also discussed.  
  Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348186700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2079  
Permanent link to this record
 

 
Author (up) Anderson, P.R.; Balbinot, R.; Fabbri, A.; Parentani, R. url  doi
openurl 
  Title Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 12 Pages 124018 - 18pp  
  Keywords  
  Abstract The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.  
  Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320609200009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1488  
Permanent link to this record
 

 
Author (up) Anderson, P.R.; Fabbri, A.; Balbinot, R. url  doi
openurl 
  Title Low frequency gray-body factors and infrared divergences: Rigorous results Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 6 Pages 064061 - 18pp  
  Keywords  
  Abstract Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a one-dimensional Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of the symmetric two-point function and two functions derived from it: the point-split stress-energy tensor for the massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime and the density-density correlation function for a Bose-Einstein condensate acoustic black hole.  
  Address [Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352062800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2172  
Permanent link to this record
 

 
Author (up) Balbinot, R.; Carusotto, I.; Fabbri, A.; Recati, A. url  doi
openurl 
  Title Testing Hawking Particle Creation By Black Holes Through Correlation Measurements Type Journal Article
  Year 2010 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 19 Issue 14 Pages 2371-2377  
  Keywords  
  Abstract Hawking's prediction of thermal radiation by black holes has been shown by Unruh to be expected also in condensed matter systems. We show here that in a black hole-like configuration realized in a BEC this particle-creation does indeed take place and can be unambiguously identified via a characteristic pattern in the density-density correlations. This opens the concrete possibility of the experimental verification of this effect.  
  Address [Balbinot, R.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286112000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 534  
Permanent link to this record
 

 
Author (up) Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime Type Journal Article
  Year 2024 Publication Universe Abbreviated Journal Universe  
  Volume 10 Issue 1 Pages 18 - 14pp  
  Keywords Hawking radiation; Unruh vacuum; Reissner-Nordstrom black holes  
  Abstract The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151025300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5914  
Permanent link to this record
 

 
Author (up) Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Quantum energy momentum tensor and equal time correlations in a Reissner-Nordström black hole Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue Pages 045004 - 9pp  
  Keywords  
  Abstract We consider a Reissner-Nordström black hole formed by the collapse of a charged null shell. The renormalized expectation values of the energy-momentum tensor operator for a massless scalar field propagating in the two-dimensional section of this spacetime are given. We then analyze the across-the-horizon correlations of the related energy density operator for free-falling observers to reveal the correlations between the Hawking particles and their interior partners.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6093  
Permanent link to this record
 

 
Author (up) Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title The Hawking Effect in the Particles-Partners Correlations Type Journal Article
  Year 2023 Publication Physics Abbreviated Journal Physics  
  Volume 5 Issue 4 Pages 968-982  
  Keywords quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon  
  Abstract We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130983900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5858  
Permanent link to this record
 

 
Author (up) Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Quantum correlations across the horizon in acoustic and gravitational black holes Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 4 Pages 045010 - 20pp  
  Keywords  
  Abstract We investigate, within the framework of quantum field theory in curved space, the correlations across the horizon of a black hole in order to highlight the particle-partner pair creation mechanism at the origin of Hawking radiation. The analysis concerns both acoustic black holes, formed by Bose-Einstein condensates, and gravitational black holes. More precisely, we have considered a typical acoustic black hole metric with two asymptotic homogeneous regions and the Schwarzschild metric as describing a gravitational black hole. By considering equal-time correlation functions, we find a striking disagreement between the two cases: the expected characteristic peak centered along the trajectories of the Hawking particles and their partners seems to appear only for the acoustic black hole and not for the gravitational Schwarzschild one. The reason for that is the existence of a quantum atmosphere displaced from the horizon as the locus of origin of Hawking radiation together, and this is the crucial aspect, with the presence of a central singularity in the gravitational case swallowing everything is trapped inside the horizon. Correlations, however, are not absent in the gravitational case; to see them, one simply has to consider correlation functions at unequal times, which indeed display the expected peak.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Bologna, Italy, Email: balbinot@bo.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000761172600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5156  
Permanent link to this record
 

 
Author (up) Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Amplifying the Hawking Signal in BECs Type Journal Article
  Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2014 Issue Pages 713574 - 8pp  
  Keywords  
  Abstract We consider simple models of Bosep-Einstein condensates to study analog pairp-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly timep-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms' interactions shortly before measurements are made.  
  Address [Balbinot, Roberto; Fabbri, Alessandro] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy, Email: afabbri@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335740300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1787  
Permanent link to this record
 

 
Author (up) Balbinot, R.; Fabbri, A.; Dudley, R.A.; Anderson, P.R. url  doi
openurl 
  Title Particle production in the interiors of acoustic black holes Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 10 Pages 105021 - 13pp  
  Keywords  
  Abstract Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This nonthermality is due to the anomalous scattering that occurs in the interior regions.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000498879600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4209  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva