|
Records |
Links |
|
Author  |
Arnault, P.; Macquet, A.; Angles-Castillo, A.; Marquez-Martin, I.; Pina-Canelles, V.; Perez, A.; Di Molfetta, G.; Arrighi, P.; Debbasch, F. |

|
|
Title |
Quantum simulation of quantum relativistic diffusion via quantum walks |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of Physics A |
Abbreviated Journal |
J. Phys. A |
|
|
Volume |
53 |
Issue |
20 |
Pages |
205303 - 39pp |
|
|
Keywords |
noisy quantum walks; noisy quantum systems; decoherence; Lindblad equation; quantum simulation; relativistic diffusions; telegraph equation |
|
|
Abstract |
Two models are first presented, of a one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is evidenced both analytically and numerically. This model of spatial diffusion has the intriguing specificity of making sense only with original unitary models which are relativistic in the sense that they have chirality, on which the noise is introduced: the diffusion arises via the by-construction (quantum) coupling of chirality to the position. For a particle with vanishing mass, the model of quantum relativistic diffusion introduced in the present work, reduces to the well-known telegraph equation, which yields propagation at short times, diffusion at long times, and exhibits no quantumness. Finally, the results are extended to temporal noises which depend smoothly on position. |
|
|
Address |
[Arnault, Pablo; Angles-Castillo, Andreu; Marquez-Martin, Ivan; Pina-Canelles, Vicente; Perez, Armando; Di Molfetta, Giuseppe] Univ Valencia, Dept Fis Teor, Dr Moliner 50, Burjassot 46100, Spain, Email: pablo.arnault@ic.uv.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1751-8113 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000531359000001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4390 |
|
Permanent link to this record |
|
|
|
|
Author  |
Arnault, P.; Perez, A.; Arrighi, P.; Farrelly, T. |

|
|
Title |
Discrete-time quantum walks as fermions of lattice gauge theory |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Physical Review A |
Abbreviated Journal |
Phys. Rev. A |
|
|
Volume |
99 |
Issue |
3 |
Pages |
032110 - 16pp |
|
|
Keywords |
|
|
|
Abstract |
It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time. |
|
|
Address |
[Arnault, Pablo; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: pablo.arnault@ific.uv.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9926 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000461896700002 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3950 |
|
Permanent link to this record |
|
|
|
|
Author  |
Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A. |

|
|
Title |
From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular Quantum Walks |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Scientific Reports |
Abbreviated Journal |
Sci Rep |
|
|
Volume |
9 |
Issue |
|
Pages |
10904 - 10pp |
|
|
Keywords |
|
|
|
Abstract |
A discrete-time Quantum Walk (QW) is an operator driving the evolution of a single particle on the lattice, through local unitaries. In a previous paper, we showed that QWs over the honeycomb and triangular lattices can be used to simulate the Dirac equation. We apply a spacetime coordinate transformation upon the lattice of this QW, and show that it is equivalent to introducing spacetime-dependent local unitaries-whilst keeping the lattice fixed. By exploiting this duality between changes in geometry, and changes in local unitaries, we show that the spacetime-dependent QW simulates the Dirac equation in (2 + 1)-dimensional curved spacetime. Interestingly, the duality crucially relies on the non linear-independence of the three preferred directions of the honeycomb and triangular lattices: The same construction would fail for the square lattice. At the practical level, this result opens the possibility to simulate field theories on curved manifolds, via the quantum walk on different kinds of lattices. |
|
|
Address |
[Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France, Email: pablo.arrighi@univ-amu.fr; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Nature Publishing Group |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000477701800007 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4081 |
|
Permanent link to this record |
|
|
|
|
Author  |
Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A. |

|
|
Title |
Dirac equation as a quantum walk over the honeycomb and triangular lattices |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Physical Review A |
Abbreviated Journal |
Phys. Rev. A |
|
|
Volume |
97 |
Issue |
6 |
Pages |
062111 - 5pp |
|
|
Keywords |
|
|
|
Abstract |
A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces. |
|
|
Address |
[Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Aix Marseille Univ, Univ Toulon, LIS, CNRS, Marseille, France, Email: pablo.arrighi@univ-amu.fr; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9926 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000435076800001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
3624 |
|
Permanent link to this record |
|
|
|
|
Author  |
Nzongani, U.; Eon, N.; Marquez-Martin, I.; Perez, A.; Di Molfetta, G.; Arrighi, P. |

|
|
Title |
Dirac quantum walk on tetrahedra |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Physical Review A |
Abbreviated Journal |
Phys. Rev. A |
|
|
Volume |
110 |
Issue |
4 |
Pages |
042418 - 15pp |
|
|
Keywords |
|
|
|
Abstract |
Discrete-time quantum walks (QWs) are transportation models of single quantum particles over a lattice. Their evolution is driven through causal and local unitary operators. QWs are a powerful tool for quantum simulation of fundamental physics, as some of them have a continuum limit converging to well-known physics partial differential equations, such as the Dirac or the Schr & ouml;dinger equation. In this paper, we show how to recover the Dirac equation in (3 + 1) dimensions with a QW evolving in a tetrahedral space. This paves the way to simulate the Dirac equation on a curved space-time. This also suggests an ordered scheme for propagating matter over a spin network, of interest in loop quantum gravity, where matter propagation has remained an open problem. |
|
|
Address |
[Nzongani, Ugo] Inst Polytech Paris, Unite Math Appl, ENSTA Paris, F-91120 Palaiseau, France, Email: ugo.nzongani@lis-lab.fr; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9926 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:001340814000005 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
6311 |
|
Permanent link to this record |