toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Araujo Filho, A.A. url  doi
openurl 
  Title Analysis of a regular black hole in Verlinde's gravity Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 1 Pages 015003 - 30pp  
  Keywords Verlinde's emergent gravity; dark matter; shadows; black hole  
  Abstract This work focuses on the examination of a regular black hole within Verlinde's emergent gravity, specifically investigating the Hayward-like (modified) solution. The study reveals the existence of three horizons under certain conditions, i.e. an event horizon and two Cauchy horizons. Our results indicate regions which phase transitions occur based on the analysis of heat capacity and Hawking temperature. To compute the latter quantity, we utilize three distinct methods: the surface gravity approach, Hawking radiation, and the application of the first law of thermodynamics. In the case of the latter approach, it is imperative to introduce a correction to ensure the preservation of the Bekenstein-Hawking area law. Geodesic trajectories and critical orbits (photon spheres) are calculated, highlighting the presence of three light rings. Additionally, we investigate the black hole shadows. Furthermore, the quasinormal modes are explored using third- and sixth-order Wentzel-Kramers-Brillouin approximations. In particular, we observe stable and unstable oscillations for certain frequencies. Finally, in order to comprehend the phenomena of time-dependent scattering in this scenario, we provide an investigation of the time-domain solution.  
  Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001114102700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5841  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A. url  doi
openurl 
  Title Implications of a Simpson-Visser solution in Verlinde's framework Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 1 Pages 73 - 22pp  
  Keywords  
  Abstract This study focuses on investigating a regular black hole within the framework of Verlinde's emergent gravity. In particular, we explore the main aspects of the modified Simpson-Visser solution. Our analysis reveals the presence of a unique physical event horizon under certain conditions. Moreover, we study the thermodynamic properties, including the Hawking temperature, the entropy, and the heat capacity. Based on these quantities, our results indicate several phase transitions. Geodesic trajectories for photon-like particles, encompassing photon spheres and the formation of black hole shadows, are also calculated to comprehend the behavior of light in the vicinity of the black hole. Additionally, we also provide the calculation of the time delay and the deflection angle. Corroborating our results, we include an additional application in the context of high-energy astrophysical phenomena: neutrino energy deposition. Finally, we investigate the quasinormal modes using third-order WKB approximation.  
  Address [Filho, A. A. Araujo] Univ Valencia, CSIC, Ctr Mixto Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001147924500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5916  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A. url  doi
openurl 
  Title Thermodynamics of massless particles in curved spacetime Type Journal Article
  Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 12 Issue 13 Pages 2350226 - 40pp  
  Keywords Einstein-aether; thermodynamic properties; curved spacetime  
  Abstract This work is devoted to study the behavior of massless particles within the context of curved spacetime. In essence, we investigate the consequences of the scale factor C(?) of the Friedmann-Robertson-Walker metric in the Einstein-aether formalism to study photon-like particles. To do so, we consider the system within the canonical ensemble formalism in order to derive the following thermodynamic state quantities: spectral radiance, Helmholtz free energy, pressure, entropy, mean energy and the heat capacity. Moreover, the correction to the Stefan-Boltzmann law and the equation of states are also provided. Particularly, we separate our study within three distinct cases, i.e. s = 0, p = 0; s = 1, p = 1; s = 2, p = 1. In the first one, the results are derived numerically. Nevertheless, for the rest of the cases, all the calculations are accomplished analytically showing explicitly the dependence of the scale factor C(?) and the Riemann zeta function ?(s). Furthermore, our analyses are accomplished in general taking into account three different regimes of temperature of the universe, i.e. the inflationary era (T = 10(13)GeV), the electroweak epoch (T = 10(3)GeV) and the cosmic microwave background (T = 10(-13)GeV).  
  Address [Araujo Filho, A. A.] Univ Fed Cearra UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001048378900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5613  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Furtado, J.; Hassanabadi, H.; Reis, J.A.A.S. url  doi
openurl 
  Title Thermal analysis of photon-like particles in rainbow gravity Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 42 Issue Pages 101310 - 8pp  
  Keywords Rainbow gravity; Thermodynamics; Bounds  
  Abstract This work is devoted to study the thermodynamic behavior of photon-like particles within the rainbow gravity formalism. To to do this, we chose two particular ansatzs to accomplish our calculations. First, we consider a dispersion relation which avoids UV divergences, getting a positive effective cosmological constant. We provide numerical analysis for the thermodynamic functions of the system and bounds are estimated. Furthermore, a phase transition is also expected for this model. Second, we consider a dispersion relation employed in the context of Gamma Ray Bursts. Remarkably, for this latter case, the thermodynamic properties are calculated in an analytical manner and they turn out to depend on the harmonic series Hn, gamma & UGamma; (z), polygamma & psi;n(z) and zeta Riemann functions & zeta;(z).  
  Address [Araujo Filho, A. A.] Univ Valencia, CSIC, Dept Fis Teor & IFIC, Ctr Mixto Univ Valencia, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001062674000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5667  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Furtado, J.; Reis, J.A.A.S.; Silva, J.E.G. url  doi
openurl 
  Title Thermodynamical properties of an ideal gas in a traversable wormhole Type Journal Article
  Year 2023 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 40 Issue 24 Pages 245001 - 20pp  
  Keywords wormhole; thermodynamic properties; Ellis wormhole  
  Abstract In this work, we analyze the thermodynamic properties of non-interacting particles under influence of the gravitational field of a traversable wormhole. In particular, we investigate how the thermodynamic quantities are affected by the Ellis wormhole geometry, considering three different regions to our study: asymptotically far, close to the throat, and at the throat. The thermodynamic quantities turn out to depend strongly on parameter that controls the wormhole throat radius. By varying it, there exist an expressive modification in the thermodynamic state quantities, exhibiting both usual matter and dark energy-like behaviors. Finally, the interactions are regarded to the energy density and it seems to indicate that it “cures” the dark energy-like features.  
  Address [Araujo Filho, A. A.] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001098744300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5792  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva