Records |
Author |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |
Title |
Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations |
Type |
Journal Article |
Year |
2020 |
Publication |
Nature |
Abbreviated Journal |
Nature |
Volume |
580 |
Issue |
7803 |
Pages |
339-344 |
Keywords |
|
Abstract |
The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model's charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks. |
Address |
[Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain |
Corporate Author |
|
Thesis |
|
Publisher |
Nature Publishing Group |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
0028-0836 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000530151300023 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4388 |
Permanent link to this record |
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |
Title |
Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 x 10(21) Protons on Target |
Type |
Journal Article |
Year |
2018 |
Publication |
Physical Review Letters |
Abbreviated Journal |
Phys. Rev. Lett. |
Volume |
121 |
Issue |
17 |
Pages |
171802 - 9pp |
Keywords |
|
Abstract |
The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of 14.7(7.6) x 10(20) protons on target in the neutrino (antineutrino) mode, 89 nu(e) candidates and seven anti-nu(e) candidates are observed, while 67.5 and 9.0 are expected for delta(CP) = 0 and normal mass ordering. The obtained 2 sigma confidence interval for the CP-violating phase, delta(CP), does not include the CP-conserving cases (delta(CP) = 0, pi). The best-fit values of other parameters are sin(2) theta(23) = 0.526(-0.036)(+0.032) and Delta m(32)(2) = 2.463(-0.070)(+0.071) x 10(-3) eV(2)/c(4). |
Address |
[Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid 28049, Spain |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
0031-9007 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000448172000004 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
3773 |
Permanent link to this record |
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |
Title |
Search for Electron Antineutrino Appearance in a Long-Baseline Muon Antineutrino Beam |
Type |
Journal Article |
Year |
2020 |
Publication |
Physical Review Letters |
Abbreviated Journal |
Phys. Rev. Lett. |
Volume |
124 |
Issue |
16 |
Pages |
161802 - 8pp |
Keywords |
|
Abstract |
Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40s and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions. |
Address |
[Bravo Berguno, D.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain |
Corporate Author |
|
Thesis |
|
Publisher |
Amer Physical Soc |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
0031-9007 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000527135200004 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4379 |
Permanent link to this record |
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |
Title |
Search for neutral-current induced single photon production at the ND280 near detector in T2K |
Type |
Journal Article |
Year |
2019 |
Publication |
Journal of Physics G |
Abbreviated Journal |
J. Phys. G |
Volume |
46 |
Issue |
8 |
Pages |
08LT01 - 16pp |
Keywords |
T2K; neutrino; neutrino oscillation; neutrino interaction; Mini-BooNE; CP violation |
Abstract |
Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of < E-v > similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals. |
Address |
[Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain |
Corporate Author |
|
Thesis |
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
0954-3899 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000518888100001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4318 |
Permanent link to this record |
|
|
|
Author |
T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. |
Title |
Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280 |
Type |
Journal Article |
Year |
2020 |
Publication |
Journal of High Energy Physics |
Abbreviated Journal |
J. High Energy Phys. |
Volume |
10 |
Issue |
10 |
Pages |
114 - 43pp |
Keywords |
Other experiments |
Abstract |
The electron (anti-)neutrino component of the T2K neutrino beam constitutes the largest background in the measurement of electron (anti-)neutrino appearance at the far detector. The electron neutrino scattering is measured directly with the T2K off-axis near detector, ND280. The selection of the electron (anti-)neutrino events in the plastic scintillator target from both neutrino and anti-neutrino mode beams is discussed in this paper. The flux integrated single differential charged-current inclusive electron (anti-)neutrino cross-sections, d sigma/dp and d sigma/d cos(theta), and the total cross-sections in a limited phase-space in momentum and scattering angle (p 300 MeV/c and theta <= 45 degrees) are measured using a binned maximum likelihood fit and compared to the neutrino Monte Carlo generator predictions, resulting in good agreement. |
Address |
[Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
1029-8479 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000583585900001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4589 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Long-baseline neutrino oscillation physics potential of the DUNE experiment |
Type |
Journal Article |
Year |
2020 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
80 |
Issue |
10 |
Pages |
978 - 34pp |
Keywords |
|
Abstract |
The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5 sigma, for all delta CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 sigma (5 sigma) after an exposure of 5 (10) years, for 50% of all delta CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22 theta 13 to current reactor experiments. |
Address |
[Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: callum.wilkinson@lhep.unibe.ch |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000586405100002 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4594 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration |
Type |
Journal Article |
Year |
2021 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
81 |
Issue |
4 |
Pages |
322 - 51pp |
Keywords |
|
Abstract |
The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach. |
Address |
[Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: lkoerner@central.uh.edu; |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000641453500001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4809 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Supernova neutrino burst detection with the Deep Underground Neutrino Experiment |
Type |
Journal Article |
Year |
2021 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
81 |
Issue |
5 |
Pages |
423 - 26pp |
Keywords |
|
Abstract |
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered. |
Address |
[Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000661101700001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
4859 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC |
Type |
Journal Article |
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
82 |
Issue |
7 |
Pages |
618 - 29pp |
Keywords |
|
Abstract |
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. |
Address |
[Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000826161300003 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5293 |
Permanent link to this record |
|
|
|
Author |
DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. |
Title |
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network |
Type |
Journal Article |
Year |
2022 |
Publication |
European Physical Journal C |
Abbreviated Journal |
Eur. Phys. J. C |
Volume |
82 |
Issue |
10 |
Pages |
903 - 19pp |
Keywords |
|
Abstract |
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation. |
Address |
[Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov |
Corporate Author |
|
Thesis |
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN  |
1434-6044 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
WOS:000866503200001 |
Approved |
no |
Is ISI |
yes |
International Collaboration |
yes |
Call Number |
IFIC @ pastor @ |
Serial |
5386 |
Permanent link to this record |