toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Alarcon, J.M.; Hiller Blin, A.N.; Vicente Vacas, M.J.; Weiss, C. url  doi
openurl 
  Title Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis Type Journal Article
  Year 2017 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 964 Issue Pages 18-54  
  Keywords Electromagnetic form factors; Chiral lagrangians; Dispersion relations; Hyperons; Charge distribution  
  Abstract The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.  
  Address [Alarcon, J. M.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: alarcon@jlab.org  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404199900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3188  
Permanent link to this record
 

 
Author (up) Alarcon, J.M.; Martin Camalich, J.; Oller, J.A.; Alvarez-Ruso, L. url  doi
openurl 
  Title pi N scattering in relativistic baryon chiral perturbation theory reexamined Type Journal Article
  Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 83 Issue 5 Pages 055205 - 14pp  
  Keywords  
  Abstract We have analyzed pion-nucleon scattering using the manifestly relativistic covariant framework of infrared regularization up to O(q(3)) in the chiral expansion, where q is a generic small momentum. We describe the low-energy phase shifts with a similar quality as previously achieved with heavy baryon chiral perturbation theory, root s less than or similar to 1.14 GeV. New values are provided for the O(q(2)) and O(q(3)) low-energy constants, which are compared with previous determinations. This is also the case for the scattering lengths and volumes. Finally, we have unitarized the previous amplitudes and as a result the energy range where data are reproduced increases significantly.  
  Address [Alarcon, J. M.; Oller, J. A.] Univ Murcia, Dept Fis, E-30071 Murcia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290717900006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 633  
Permanent link to this record
 

 
Author (up) Gil-Dominguez, F.; Alarcon, J.M.; Weiss, C. url  doi
openurl 
  Title Proton charge radius extraction from muon scattering at MUSE using dispersively improved chiral effective field theory Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 7 Pages 074026 - 14pp  
  Keywords  
  Abstract The MUSE experiment at Paul Scherrer Institute will perform the first measurement of low-energy muon-proton elastic scattering (muon lab momenta 115-210 MeV) with the aim of determining the proton charge radius. We study the prospects for the proton radius extraction using the theoretical framework of dispersively improved chiral effective field theory (DI.EFT). It connects the proton radii with the finite-Q(2) behavior of the form factors through complex analyticity and enables the use of data up to Q(2) similar to 0.1 GeV2 for radius extraction. We quantify the sensitivity of the μp cross section to the proton charge radius, the theoretical uncertainty of the cross section predictions, and the size of two-photon exchange corrections. We find that the optimal kinematics for radius extraction at MUSE is at momenta 210 MeV and Q(2) similar to 0.05-0.08 GeV2. We compare the performance of electron and muon scattering in the same kinematics. As a by-product, we obtain explicit predictions for the μp and ep cross sections at MUSE as functions of the assumed value of the proton radius.  
  Address [Gil-Dominguez, F.] Inst Fis Corpuscular IFIC, Ctr Mixto CSIC UV, Inst Invest Paterna, C Catedrat Jose Beltran 2, Valencia, Spain, Email: fernando.gil@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001193674200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6024  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva