toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aguilar, A.C.; Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title New method for determining the quark-gluon vertex Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 6 Pages 065027 - 26pp  
  Keywords  
  Abstract We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex in terms of an unknown three-point function, in the Landau gauge. The key ingredient of this method is the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. When this latter relation is combined with the standard gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate determination of the nonperturbative behavior of all 12 form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. The actual implementation of this procedure is carried out in the Landau gauge, in order to make contact with the results of lattice simulations performed in this particular gauge. The most demanding technical aspect involves the approximate calculation of the components of the aforementioned (fully dressed) three-point function, using lattice data as input for the gluon propagators appearing in its diagrammatic expansion. The numerical evaluation of the relevant form factors in three special kinematical configurations (soft-gluon and quark symmetric limit, zero quark momentum) is carried out in detail, finding qualitative agreement with the available lattice data. Most notably, a concrete mechanism is proposed for explaining the puzzling divergence of one of these form factors observed in lattice simulations.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342147700012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1932  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Schwinger mechanism in linear covariant gauges Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 034017 - 16pp  
  Keywords  
  Abstract In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansatze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansatze are compatible with the existence of nontrivial solutions. When such Ansatze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic “zero crossing,” while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394092900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2987  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title The gluon mass generation mechanism: A concise primer Type Journal Article
  Year 2016 Publication Frontiers of Physics Abbreviated Journal Front. Phys.  
  Volume 11 Issue 2 Pages 111203 - 18pp  
  Keywords nonperturbative physics; Schwinger-Dyson equations; dynamical mass generation  
  Abstract We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences. We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.  
  Address [Aguilar, A. C.] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil, Email: Joannis.Papavassiliou@uv.es  
  Corporate Author Thesis  
  Publisher Higher Education Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387550300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2859  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Yang-Mills two-point functions in linear covariant gauges Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 8 Pages 085014 - 14pp  
  Keywords  
  Abstract In this paper we use two different but complementary approaches in order to study the ghost propagator of a pure SU(3) Yang-Mills theory quantized in the linear covariant gauges, focusing on its dependence on the gauge-fixing parameter xi in the deep infrared. In particular, we first solve the Schwinger-Dyson equation that governs the dynamics of the ghost propagator, using a set of simplifying approximations, and under the crucial assumption that the gluon propagators for xi > 0 are infrared finite, as is the case in the Landau gauge (xi = 0). Then we appeal to the Nielsen identities, and express the derivative of the ghost propagator with respect to xi in terms of certain auxiliary Green's functions, which are subsequently computed under the same assumptions as before. Within both formalisms we find that for xi > 0 the ghost dressing function approaches zero in the deep infrared, in sharp contrast to what happens in the Landau gauge, where it is known to saturate at a finite (nonvanishing) value. The Nielsen identities are then extended to the case of the gluon propagator, and the xi-dependence of the corresponding gluon masses is derived using as input the results obtained in the previous steps. The result turns out to be logarithmically divergent in the deep infrared; the compatibility of this behavior with the basic assumption of a finite gluon propagator is discussed, and a specific Ansatz is put forth, which readily reconciles both features.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352471500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2189  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Renormalization group analysis of the gluon mass equation Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 8 Pages 085032 - 19pp  
  Keywords  
  Abstract We carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass in pure Yang-Mills theory, without quark effects taken into account. A detailed, all-order analysis of the complete kernel appearing in this particular equation, derived in the Landau gauge, reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, for which the deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various possibilities. Certain renormalization-group inspired Ansatze for the kernel are then proposed, and their numerical implications are explored in detail. One of the solutions obtained fulfills the theoretical expectations to a high degree of accuracy, yielding a gluon mass that is positive definite throughout the entire range of physical momenta, and displays in the ultraviolet the so-called “power-law” running, in agreement with standard arguments based on the operator product expansion. Some of the technical difficulties thwarting a more rigorous determination of the kernel are discussed, and possible future directions are briefly mentioned.  
  Address [Aguilar, A. C.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335236500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1780  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva