toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Abbar, S.; Capozzi, F. url  doi
openurl 
  Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 051 - 13pp  
  Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas  
  Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.  
  Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776551600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5186  
Permanent link to this record
 

 
Author (up) Just, O.; Abbar, S.; Wu, M.R.; Tamborra, I.; Janka, H.T.; Capozzi, F. url  doi
openurl 
  Title Fast neutrino conversion in hydrodynamic simulations of neutrino-cooled accretion disks Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 8 Pages 083024 - 24pp  
  Keywords  
  Abstract The outflows from neutrino-cooled black hole accretion disks formed in neutron-star mergers or cores of collapsing stars are expected to be neutron-rich enough to explain a large fraction of elements created by the rapid neutron-capture process, but their precise chemical composition remains elusive. Here, we investigate the role of fast neutrino flavor conversion, motivated by the findings of our post-processing analysis that shows evidence of electron-neutrino lepton-number crossings deep inside the disk, hence suggesting possibly nontrivial effects due to neutrino flavor mixing. We implement a parametric, dynamically self-consistent treatment of fast conversion in time-dependent simulations and examine the impact on the disk and its outflows. By activating the otherwise inefficient, emission of heavy-lepton neutrinos, fast conversions enhance the disk cooling rates and reduce the absorption rates of electron-type neutrinos, causing a reduction of the electron fraction in the disk by 0.03-0.06 and in the ejected material by 0.01-0.03. The rapid neutron-capture process yields are enhanced by typically no more than a factor of two, rendering the overall impact of fast conversions modest. The kilonova is prolonged as a net result of increased lanthanide opacities and enhanced radioactive heating rates. We observe only mild sensitivity to the disk mass, the condition for the onset of flavor conversion, and to the considered cases of flavor mixing. Remarkably, parametric models of flavor mixing that conserve the lepton numbers per family result in an overall smaller impact than models invoking three-flavor equipartition, often assumed in previous works.  
  Address [Just, Oliver] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany, Email: o.just@gsi.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810510200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5275  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva