toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Arbelaez, C.; Cepedello, R.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title (g-2) anomalies and neutrino mass Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 7 Pages 075005 - 14pp  
  Keywords  
  Abstract Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576053400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4557  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Cottin, G.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title Long-lived charged particles and multilepton signatures from neutrino mass models Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 9 Pages 095033 - 13pp  
  Keywords  
  Abstract Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Av Espana 1680,Casilla 110-5, Valparaiso 2340000, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000535451000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4403  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Fonseca, R.M.; Romao, J.C.; Hirsch, M. url  doi
openurl 
  Title Supersymmetric SO(10)-inspired GUTs with sliding scales Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 7 Pages 075010 - 19pp  
  Keywords  
  Abstract We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of which are inspired by SO(10) unification. We consider three different kinds of setups: (i) the model has exactly one additional intermediate scale with a left-right (LR) symmetric group; (ii) SO(10) is broken to the LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SU(3)(c) X SU(2)(L) X U(1)(R) X U(1)(B-L), before breaking to the standard model (SM) group. We use sets of conditions, which we call the “sliding mechanism,” which yield unification with the extended gauge group(s) allowed at arbitrary intermediate energy scales. All models thus can have new gauge bosons within the reach of the LHC, in principle. We apply additional conditions, such as perturbative unification, renormalizability and anomaly cancellation and find that, despite these requirements, for the ansatz (i) with only one additional scale still around 50 different variants exist that can have a LR symmetry below 10 TeV. For the more complicated schemes (ii) and (iii) literally thousands of possible variants exist, and for scheme (ii) we have also found variants with very low Pati-Salam scales. We also discuss possible experimental tests of the models from measurements of supersymmetry masses. Assuming mSugra boundary conditions we calculate certain combinations of soft terms, called “invariants,” for the different classes of models. Values for all the invariants can be classified into a small number of sets, which contain information about the class of models and, in principle, the scale of beyond-minimal supersymmetric extension of the Standard Model physics, even in case the extended gauge group is broken at an energy beyond the reach of the LHC.  
  Address Univ Tecn Lisboa, Dept Fis, P-1049001 Lisbon, Portugal, Email: Carolina.Arbelaez@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317586900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1401  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Gonzalez, M.; Hirsch, M.; Kovalenko, S.G. url  doi
openurl 
  Title QCD corrections and long-range mechanisms of neutrinoless double beta decay Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 9 Pages 096014 - 5pp  
  Keywords  
  Abstract Recently it has been demonstrated that QCD corrections are numerically important for short-range mechanisms (SRM) of neutrinoless double beta decay (0 nu beta beta) mediated by heavy particle exchange. This is due to the effect of color mismatch for certain effective operators, which leads to mixing between different operators with vastly different nuclear matrix elements (NMEs). In this note we analyze the QCD corrections for long-range mechanisms (LRM), due to diagrams with light-neutrino exchange between a Standard Model (V-A)chi(V-A) and a beyond the SM lepton number violating vertex. We argue that in contrast to the SRM in the LRM case, there is no operator mixing from color-mismatched operators. This is due to a combined effect of the nuclear short-range correlations and color invariance. As a result, the QCD corrections to the LRM amount to an effect no more than 60%, depending on the operator in question. Although less crucial, taken into account QCD running makes theoretical predictions for 0 nu beta beta-decay more robust also for LRM diagrams. We derive the current experimental constraints on the Wilson coefficients for all LRM effective operators.  
  Address [Arbelaez, C.; Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388823800017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2888  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Gonzalez, M.; Kovalenko, S.G.; Hirsch, M. url  doi
openurl 
  Title QCD-improved limits from neutrinoless double beta decay Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 1 Pages 015010 - 12pp  
  Keywords  
  Abstract We analyze the impact of QCD corrections on limits derived from neutrinoless double beta decay (0 nu beta beta ). As demonstrated previously, the effect of the color mismatch arising from loops with gluons linking the quarks from different color-singlet currents participating in the effective operators has a dramatic impact on the predictions for some particular Wilson coefficients. Here, we consider all possible contributions from heavy particle exchange, i.e. the so-called short-range mechanism of 0 nu beta beta decay. All high-scale models (HSM) in this class match at some scale around a similar to few TeV with the corresponding effective theory, containing a certain set of effective dimension-9 operators. Many of these HSM receive contributions from more than one of the basic operators and we calculate limits on these models using the latest experimental data. We also show with one nontrivial example, how to derive limits on more complicated models, in which many different Feynman diagrams contribute to 0 nu beta beta decay, using our general method.  
  Address [Arbelaez, C.; Gonzalez, M.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405188200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3198  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title Long-lived heavy particles in neutrino mass models Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 5 Pages 055001 - 15pp  
  Keywords  
  Abstract All extensions of the standard model that generate Majorana neutrino masses at the electroweak scale introduce some heavy mediators, either fermions and/or scalars, weakly coupled to leptons. Here, by “heavy,” we mean implicitly the mass range between a few 100 GeV up to, say, roughly 2 TeV, such that these particles can be searched for at the LHC. We study decay widths of these mediators for several different tree-level neutrino mass models. The models we consider range from the simplest d = 5 seesaw up to d = 11 neutrino mass models. For each of the models, we identify the most interesting parts of the parameter space, where the heavy mediator fields are particularly long lived and can decay with experimentally measurable decay lengths. One has to distinguish two different scenarios, depending on whether fermions or scalars are the lighter of the heavy particles. For fermions, we find that the decay lengths correlate with the inverse of the overall neutrino mass scale. Thus, since no lower limit on the lightest neutrino mass exists, nearly arbitrarily long decay lengths can be obtained for the case in which fermions are the lighter of the heavy particles. For charged scalars, on the other hand, there exists a maximum value for the decay length in these models. This maximum value depends on the model and on the electric charge of the scalar under consideration but can at most be of the order of a few millimeters. Interestingly, independent of the model, this maximum occurs always in a region of parameter space, where leptonic and gauge boson final states have similar branching ratios, i.e., where the observation of lepton number-violating final states from scalar decays is possible.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483583000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4127  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Hirsch, M.; Restrepo, D. url  doi
openurl 
  Title Fermionic triplet dark matter in an SO(10)-inspired left-right model Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 9 Pages 095034 - 9pp  
  Keywords  
  Abstract We study a left right (LR) extension of the Standard Model (SM) where the Dark Matter(DM) candidate is composed of a set of fermionic Majorana triplets. The DM is stabilized by a remnant Z(2) symmetry from the breaking of the LR group to the SM. Two simple scenarios where the DM particles plus a certain set of extra fields lead to gauge coupling unification with a low LR scale are explored. The constraints from relic density and predictions for direct detection are discussed for both scenarios. The first scenario with a SUd(2)(R) vectorlike fermion triplet contains a DM candidate which is almost unconstrained by current direct detection experiments. The second scenario, with an additional SU(2)R triplet, opens up a scalar portal leading to direct detection constraints which are similar to collider limits for right gauge bosons. The DM parameter space consistent with phenomenological requirements can also lead to successful gauge coupling unification in a SO(10) setup.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@.usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402471800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3154  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Kolesova, H.; Malinsky, M. url  doi
openurl 
  Title Witten's mechanism in the flipped SU(5) unification Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 5 Pages 055003 - 16pp  
  Keywords  
  Abstract We argue that Witten's loop mechanism for the right-handed Majorana neutrino mass generation identified originally in the SO(10) grand unification context can be successfully adopted to the class of the simplest flipped SU(5) models. In such a framework, the main drawback of the SO(10) prototype-in particular, the generic tension among the gauge unification constraints and the absolute neutrino mass scale-is alleviated, and a simple yet potentially realistic and testable scenario emerges.  
  Address [Arbelaez Rodriguez, Carolina] Univ Tecn Lisboa, Inst Super Tecn, Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal, Email: carolina.arbelaez@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332175700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1715  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Romao, J.C.; Hirsch, M.; Malinsky, M. url  doi
openurl 
  Title LHC-scale left-right symmetry and unification Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 3 Pages 035002 - 19pp  
  Keywords  
  Abstract We construct a comprehensive list of nonsupersymmetric standard model extensions with a low-scale left-right (LR)-symmetric intermediate stage that may be obtained as simple low-energy effective theories within a class of renormalizable SO(10) grand unified theories. Unlike the traditional “minimal” LR models many of our example settings support a perfect gauge coupling unification even if the LR scale is in the LHC domain at a price of only (a few copies of) one or two types of extra fields pulled down to the TeV-scale ballpark. We discuss the main aspects of a potentially realistic model building conforming the basic constraints from the quark and lepton sector flavor structure, proton decay limits, etc. We pay special attention to the theoretical uncertainties related to the limited information about the underlying unified framework in the bottom-up approach, in particular, to their role in the possible extraction of the LR-breaking scale. We observe a general tendency for the models without new colored states in the TeV domain to be on the verge of incompatibility with the proton stability constraints.  
  Address [Arbelaez, Carolina; Romao, Jorge C.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: carolina@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331878400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1703  
Permanent link to this record
 

 
Author (up) Archidiacono, M.; Giusarma, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Neutrino and dark radiation properties in light of recent CMB observations Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 10 Pages 103519 - 10pp  
  Keywords  
  Abstract Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoustic oscillation data are removed from the analyses and Hubble Telescope measurements are also exploited. A similar result is obtained within a standard cosmology with N-eff massless neutrinos, although in this case the agreement between these two measurements is also improved when considering simultaneously baryon acoustic oscillation data and Hubble Space Telescope measurements. In the N-eff massive neutrino case the two high multipole probes give very different results regardless of the external data sets used in the combined analyses. When considering extended cosmological scenarios with a dark energy equation of state or with a running of the scalar spectral index, the evidence for neutrino masses found for the South Pole Telescope in the three neutrino scenario disappears for all the data combinations explored here. Again, adding Hubble Telescope data seems to improve the agreement between the two high multipole cosmic microwave background measurements considered here. In the case in which a dark radiation background with unknown clustering properties is also considered, SPT data seem to exclude the standard value for the dark radiation viscosity c(vis)(2) = 1/3 at the 2 sigma C.L., finding evidence for massive neutrinos only when combining SPT data with baryon acoustic oscillation measurements.  
  Address Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000319254500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1462  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva