toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Abbas, G.; Abyaneh, M.Z.; Biswas, A.; Gupta, S.; Patra, M.; Rajasekaran, G.; Srivastava, R. url  doi
openurl 
  Title High scale mixing relations as a natural explanation for large neutrino mixing Type Journal Article
  Year 2016 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 31 Issue 17 Pages 1650095 - 47pp  
  Keywords  
  Abstract The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a high scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixing angles are proportional to the quark mixing angles at the unification scale by taking into account the latest experimental constraints from the neutrino sector. These relations are able to explain the pattern of leptonic mixing at the low scale and thereby hint that these relations could be possible signatures of a quark lepton symmetry or some other underlying quark lepton mixing unification mechanism at some high scale linked to Grand Unified Theories.  
  Address [Abbas, Gauhar; Abyaneh, Mehran Zahiri] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: Gauhar.Abbas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000379878600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2764  
Permanent link to this record
 

 
Author (up) Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title A comprehensive mechanism reproducing the mass and mixing parameters of quarks and leptons Type Journal Article
  Year 2013 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 28 Issue 16 Pages 1350070 - 29pp  
  Keywords CP phase; CKM matrix; PMNS matrix; fermion masses  
  Abstract It is shown that if, from the starting point of a universal rank-one mass matrix long favored by phenomenologists, one adds the assumption that it rotates (changes its orientation in generation space) with changing scale, one can reproduce, in terms of only six real parameters, all the 16 mass ratios and mixing parameters of quarks and leptons. Of these 16 quantities so reproduced, 10 for which data exist for direct comparison (i.e. the CKM elements including the CP-violating phase, the angles theta(12), theta(13), theta(23) in nu-oscillation, and the masses m(c), m(mu), m(e)) agree well with experiment, mostly to within experimental errors; four others (m(s), m(u), m(d), m(nu 2)), the experimental values for which can only be inferred, agree reasonably well; while two others (m(nu 1), delta(CP) for leptons), not yet measured experimentally, remain as predictions. In addition, one gets as bonuses, estimates for (i) the right-handed neutrino mass m(nu R) and (ii) the strong CP angle theta inherent in QCD. One notes in particular that the output value for sin(2) 2 theta(13) from the fit agrees very well with recent experiments. By inputting the current experimental value with its error, one obtains further from the fit two new testable constraints: (i) that theta(23) must depart from its “maximal” value: sin(2) 2 theta(23) similar to 0.935 +/- 0.021, (ii) that the CP-violating (Dirac) phase in the PMNS would be smaller than in the CKM matrix: of order only vertical bar sin delta(CP)vertical bar <= 0.31 if not vanishing altogether.  
  Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321062900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1482  
Permanent link to this record
 

 
Author (up) Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Developing the Framed Standard Model Type Journal Article
  Year 2012 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 27 Issue 17 Pages 1250087 - 45pp  
  Keywords Quantum field theory; CP violation; mixing and fermion masses  
  Abstract The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is “universal,” rank-one and rotates (changes its orientation in generation space) with changing scale mu, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.  
  Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305621900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1061  
Permanent link to this record
 

 
Author (up) Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title Mass Hierarchy, Mixing, CP-Violation And Higgs Decay – Or Why Rotation Is Good For Us Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 26 Issue 13 Pages 2087-2124  
  Keywords Quark and lepton mixing; mass hierarchy; CP violation; rotation  
  Abstract The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how it leads to ready explanations both for the fermion mass hierarchy and for the distinctive mixing patterns between up and down fermion states, which can be and have been tested against experiment and shown to be fully consistent with existing data. Further, R2M2 is seen to offer, as by-products: (i) a new solution to the strong CP problem in QCD by linking the theta-angle there to the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel predictions of possible anomalies in Higgs decay observable in principle at the LHC. A special effort is made to answer some questions raised.  
  Address [Baker, Michael J.; Tsun, Tsou Sheung] Univ Oxford, Inst Math, Oxford OX1 3LB, England, Email: bakerm@maths.ox.ac.uk  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291219600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 643  
Permanent link to this record
 

 
Author (up) Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology Type Journal Article
  Year 2023 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 38 Issue 25 Pages 2350124 - 32pp  
  Keywords Framed standard model; phase transition; early Universe; cosmology  
  Abstract The framed standard model (FSM), constructed to explain the empirical mass and mixing patterns (including CP phases) of quarks and leptons, in which it has done quite well, gives otherwise the same result as the standard model (SM) in almost all areas in particle physics where the SM has been successfully applied, except for a few specified deviations such as the W mass and the g-2 of muons, that is, just where experiment is showing departures from what SM predicts. It predicts further the existence of a hidden sector of particles some of which may function as dark matter. In this paper, we first note that the above results involve, surprisingly, the FSM undergoing a vacuum transition (VTR1) at a scale of around 17MeV, where the vacuum expectation values of the colour framons (framed vectors promoted into fields) which are all nonzero above that scale acquire some vanishing components below it. This implies that the metric pertaining to these vanishing components would vanish also. Important consequences should then ensue, but these occur mostly in the unknown hidden sector where empirical confirmation is hard at present to come by, but they give small reflections in the standard sector, some of which may have already been seen. However, one notes that if, going off at a tangent, one imagines colour to be embedded, Kaluza-Klein (KK) fashion, into a higher-dimensional space-time, then this VTR1 would cause 2 of the compactified dimensions to collapse. This might mean then that when the universe cooled to the corresponding temperature of 1011 K when it was about 10-3 s old, this VTR1 collapse would cause the three spatial dimensions of the universe to expand to compensate. The resultant expansion is estimated, using FSM parameters previously determined from particle physics, to be capable, when extrapolated backwards in time, of bringing the present universe back inside the then horizon, solving thus formally the horizon problem. Besides, VTR1 being a global phenomenon in the FSM, it would switch on and off automatically and simultaneously over all space, thus requiring seemingly no additional strategy for a graceful exit. However, this scenario has not been checked for consistency with other properties of the universe and is to be taken thus not as a candidate solution of the horizon problem but only as an observation from particle physics which might be of interest to cosmologists and experts in the early universe. For particle physicists also, it might serve as an indicator for how relevant this VTR1 can be, even if the KK assumption is not made.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001099552500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5803  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva