|   | 
Details
   web
Records
Author Barenboim, G.; Ternes, C.A.; Tortola, M.
Title Neutrinos, DUNE and the world best bound on CPT invariance Type Journal Article
Year (down) 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 780 Issue Pages 631-637
Keywords Neutrino mass and mixing; Neutrino oscillation; CPT
Abstract CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3 sigma. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Delta(Delta m(31)(2)) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.
Address [Barenboim, G.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000432187800085 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3620
Permanent link to this record
 

 
Author Barenboim, G.; Kinney, W.H.; Morse, M.J.P.
Title Phantom Dirac-Born-Infeld dark energy Type Journal Article
Year (down) 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages 083531 - 11pp
Keywords
Abstract Motivated by the apparent discrepancy between cosmic microwave background measurements of the Hubble constant and measurements from Type-la supernovae, we construct a model for dark energy with equation of state w = p/rho < -1, violating the null energy condition. Naive canonical models of so-called “phantom” dark energy require a negative scalar kinetic term, resulting in a Hamiltonian unbounded from below and associated vacuum instability. We construct a scalar field model for dark energy with w < -1, which nonetheless has a Hamiltonian bounded from below in the comoving reference frame, i.e., in the rest frame of the fluid. We demonstrate that the solution is a cosmological attractor, and find that early-time cosmological boundary conditions consist of a “frozen” scalar field, which relaxes to the attractor solution once the dark energy component dominates the cosmological energy density. We consider the model in an arbitrary choice of gauge, and find that, unlike the case of comoving gauge, the fluid Hamiltonian is in fact unbounded from below in the reference frame of a highly boosted observer, corresponding to a nonlinear gradient instability. We discuss this in the context of general NEC-violating perfect fluids, for which this instability is a general property.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000447934300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3771
Permanent link to this record
 

 
Author Barenboim, G.; Kinney, W.H.; Park, W.I.
Title Resurrection of large lepton number asymmetries from neutrino flavor oscillations Type Journal Article
Year (down) 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 4 Pages 043506 - 6pp
Keywords
Abstract We numerically solve the evolution equations of neutrino three-flavor density matrices, and show that, even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still allowed in certain limits by big bang nucleosynthesis.
Address [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000393512400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2952
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title Impact of CP-violation on neutrino lepton number asymmetries revisited Type Journal Article
Year (down) 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 765 Issue Pages 371-376
Keywords
Abstract We revisit the effect of the (Dirac) CP-violating phase on neutrino lepton number asymmetries in both mass- and flavor-basis. We found that, even if there are sizable effects on muon- and tau-neutrino asymmetries, the effect on the asymmetry of electron-neutrinos is at most similar to the upper bound set by BBN for initial neutrino degeneracy parameters smaller than order unity. We also found that, for the asymmetries in mass-basis, the changes caused by CP-violation is of sub-% level which is unlikely to be accessible neither in the current nor in the forthcoming experiments.
Address [Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000393627800051 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3011
Permanent link to this record
 

 
Author Barenboim, G.; Park, W.I.
Title A full picture of large lepton number asymmetries of the Universe Type Journal Article
Year (down) 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 048 - 10pp
Keywords cosmological neutrinos; cosmology of theories beyond the SM; leptogenesis; physics of the early universe
Abstract A large lepton number asymmetry of O(0.1-1) at present Universe might not only be allowed but also necessary for consistency among cosmological data. We show that, if a sizeable lepton number asymmetry were produced before the electroweak phase transition, the requirement for not producing too much baryon number asymmetry through sphalerons processes, forces the high scale lepton number asymmetry to be larger than about 30. Therefore a mild entropy release causing O(10-100) suppression of pre-existing particle density should take place, when the background temperature of the Universe is around T = O(10(-2) -10(2)) GeV for a large but experimentally consistent asymmetry to be present today. We also show that such a mild entropy production can be obtained by the late-time decays of the saxion, constraining the parameters of the Peccei-Quinn sector such as the mass and the vacuum expectation value of the saxion field to be m(phi) greater than or similar to O(10) TeV and phi(0) greater than or similar to O(10(14)) GeV, respectively.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000401806200048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3148
Permanent link to this record