|   | 
Details
   web
Records
Author Moretti, F.; Del Prete, M.; Montani, G.
Title Linear analysis of the gravitational beam-plasma instability Type Journal Article
Year (down) 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 6 Pages 486 - 16pp
Keywords
Abstract We investigate the well-known phenomenon of the beam-plasma instability in the gravitational sector when a fast population of particles interacts with the massive scalar mode of a Horndeski theory of gravity, resulting in linear growth of the latter amplitude. Following the approach used in the standard electromagnetic case, we start from the dielectric representation of the gravitational plasma, as introduced in a previous analysis of the Landau damping for the scalar Horndeski mode. We then set up the modified Vlasov-Einstein equation, using a Dirac delta function to describe the fast beam distribution. We thus provide an analytical expression for the dispersion relation, and we demonstrate the existence of a nonzero growth rate for the linear evolution of the Horndeski scalar mode. A numerical investigation is then performed with a trapezoidal beam distribution function, which confirms the analytical results and allows us to demonstrate how the growth rate decreases as the beam spread increases.
Address [Moretti, Fabio] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, IFIC, Valencia 46100, Spain, Email: fabio.moretti@ext.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001005587700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5570
Permanent link to this record
 

 
Author Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.
Title Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
Year (down) 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 68 Issue 14 Pages 144001 - 16pp
Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background
Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.
Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:001022671300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5571
Permanent link to this record
 

 
Author Pedersen, L.G. et al; Morales, A.I.
Title First spectroscopic study of odd-odd 78Cu Type Journal Article
Year (down) 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 4 Pages 044301 - 10pp
Keywords
Abstract Nuclei in the vicinity of 78Ni are important benchmarks for nuclear structure, which can reveal changes in the shell structure far from stability. Spectroscopy of the odd-odd isotope 78Cu was performed for the first time in an experiment with the EURICA setup at the Radioactive Isotope Beam Factory at RIKEN Nishina Center. Excited states in the neutron-rich isotope were populated following the beta decay of 78Ni produced by in-flight fission and and separated by the BigRIPS separator. A level scheme based on the analysis of γ−γ coincidences is presented. Tentative spin and parity assignments were made when possible based on the β-decay feeding intensities and γ-decay properties of the excited states. Time correlations between β and γ decay show clear indications of an isomeric state with a half-life of 3.8(4) ms. Large-scale Monte Carlo shell-model calculations were performed using the A3DA-m interaction and a valence space comprising the full fp shell and the 1g9/2 and 2d5/2 orbitals for both protons and neutrons. The comparison of the experimental results with the shell-model calculations allows interpreting the excited states in terms of spin multiplets arising from the proton-neutron interaction. The results provide further insight into the evolution of the proton single-particle orbitals as a function of neutron number, and quantitative information about the proton-neutron interaction outside the doubly magic 78Ni core.
Address [Pedersen, L. G.; Sahin, E.; Gorgen, A.; Garrote, F. L. Bello; Modamio, V.] Univ Oslo, Dept Phys, NO-0316 Oslo, Norway, Email: l.g.pedersen@fys.uio.no;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000998180300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5572
Permanent link to this record
 

 
Author Dutka, T.P.; Gargalionis, J.
Title Dimension-five baryon-number violation in low-scale Pati-Salam models Type Journal Article
Year (down) 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 035019 - 10pp
Keywords
Abstract The gauge bosons of the Pati-Salam model do not mediate proton decay at the renormalizable level, and for this reason it is possible to construct scenarios in which SU(4) (R) SU(2)R is broken at relatively low scales. In this paper we show that such low-scale models generate dimension-five operators that can give rise to nucleon decays at unacceptably large rates, even if the operators are suppressed by the Planck scale. We find an interesting complementarity between the nucleon-decay limits and the usual meson-decay constraints. Furthermore, we argue that these operators are generically present when the model is embedded into SO(10), lowering the suppression scale. Under reasonable assumptions, the lower limit on the breaking scale can be constrained to be as high as O(108) GeV.
Address [Dutka, Tomasz P.] Korea Inst Adv Study, Sch Phys, Seoul 02455, South Korea, Email: tdutka@kias.re.kr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001004173000012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5573
Permanent link to this record
 

 
Author Abreu, L.M.; Dai, L.R.; Oset, E.
Title J/Psi decay to omega, phi, K*0 plus f0(1370), f0(1710), K0*(1430), f2(1270), f'2 (1525) and K2*(1430): Role of the D-wave for tensor production Type Journal Article
Year (down) 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 843 Issue Pages 137999 - 10pp
Keywords
Abstract We reassess the decay of the J/Psi into an omega, phi, K*0 and one of the f0(1370), f0(1710), f2(1270), f'2 (1525), K0*(1430) and K2*(1430) resonances. We benefit from previous works that considered this reaction as a J/Psi decay into three vector mesons, with a scalar or tensor resonance being formed from the interaction of two of these vectors. The novelty here with respect to former studies is the investigation of the relation between the scalar meson and tensor productions for the first time. To this end, the spin structure of the four vectors present in the production vertex is analyzed, and the D-wave mechanism in the tensor production is included. Then, beyond the ratios studied previously involving scalar states and tensor states independently, new ratios relating the scalar and tensor meson productions are estimated. Our results suggest that the D-wave mechanism of tensor production assumes a relevant contribution. New experimental data reporting the angular distributions of these processes will be important for checking this conclusion.
Address [Abreu, Luciano M.] Univ Fed Bahia, Inst Fis, Campus Univ Ondina, BR-40170115 Salvador, BA, Brazil, Email: luciano.abreu@ufba.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001027532500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5574
Permanent link to this record