|   | 
Details
   web
Records
Author KM3NeT Collaboration (Aitllo, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Probing invisible neutrino decay with KM3NeT/ORCA Type Journal Article
Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 090 - 30pp
Keywords Beyond Standard Model; Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state v3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/alpha 3 = T3/m3 < 180 ps/eV at 90% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for theta(23), Delta m(31)(2) and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: victor.carretero@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992450100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5564
Permanent link to this record
 

 
Author Pompa, F.; Schwetz, T.; Zhu, J.Y.
Title Impact of nuclear matrix element calculations for current and future neutrinoless double beta decay searches Type Journal Article
Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 104 - 29pp
Keywords Baryon; Lepton Number Violation; Neutrino Interactions
Abstract Nuclear matrix elements (NME) are a crucial input for the interpretation of neutrinoless double beta decay data. We consider a representative set of recent NME calculations from different methods and investigate the impact on the present bound on the effective Majorana mass m(& beta;& beta;) by performing a combined analysis of the available data as well as on the sensitivity reach of future projects. A crucial role is played by the recently discovered short-range contribution to the NME, induced by light Majorana neutrino masses. Depending on the NME model and the relative sign of the long- and short-range contributions, the current 3 & sigma; bound can change between m(& beta;& beta;)< 40 meV and 600 meV. The sign-uncertainty may either boost the sensitivity of next-generation experiments beyond the region for m(& beta;& beta;) predicted for inverted mass ordering or prevent even advanced setups to reach this region. Furthermore, we study the possibility to distinguish between different NME calculations by assuming a positive signal and by combining measurements from different isotopes. Such a discrimination will be impossible if the relative sign of the long- and short-range contribution remains unknown, but can become feasible if m(& beta;& beta;) & GSIM; 40 meV and if the relative sign is known to be positive. Sensitivities will be dominated by the advanced Ge-76 and Xe-136 setups assumed here, but NME model-discrimination improves if data from a third isotope is added, e.g., from Te-130 or Mo-100.
Address [Pompa, Federica] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: zhujingyu@sjtu.edu.cn
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001016276900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5580
Permanent link to this record
 

 
Author Real, D.; Calvo, D.
Title Silicon Photomultipliers for Neutrino Telescopes Type Journal Article
Year (down) 2023 Publication Universe Abbreviated Journal Universe
Volume 9 Issue 7 Pages 326 - 14pp
Keywords silicon photomultipliers; neutrino telescopes; time to digital converters; electronics acquisition
Abstract Neutrino astronomy has opened a new window to the extreme Universe, entering into a fruitful era built upon the success of neutrino telescopes, which have already given a new step forward in this novel and growing field by the first observation of steady point-like sources already achieved by IceCube. Neutrino telescopes equipped with Silicon PhotoMultipliers (SiPMs) will significantly increase in number, because of their excellent time resolution and the angular resolution, and will be in better condition to detect more steady sources as well as the unexpected. The use of SiPMs represents a challenge to the acquisition electronics because of the fast signals as well as the high levels of dark noise produced by SiPMs. The acquisition electronics need to include a noise rejection scheme by implementing a coincidence filter between channels. This work discusses the advantages and disadvantages of using SiPMs for the next generation of neutrino telescopes, focusing on the possible developments that could help for their adoption in the near future.
Address [Real, Diego; Calvo, David] Univ Valencia, Inst Fis Corpuscular, CSIC, IFIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001038900800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5593
Permanent link to this record
 

 
Author Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title Phenomenology of the simplest linear seesaw mechanism Type Journal Article
Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 221 - 48pp
Keywords Specific BSM Phenomenology; Sterile or Heavy Neutrinos; Baryon; Lepton Number Violation; Other Weak Scale BSM Models
Abstract The linear seesaw mechanism provides a simple way to generate neutrino masses. In addition to Standard Model particles, it includes quasi-Dirac leptons as neutrino mass mediators, and a leptophilic scalar doublet seeding small neutrino masses. Here we review its associated physics, including restrictions from theory and phenomenology. The model yields potentially detectable μ-> e gamma rates as well as distinctive signatures in the production and decay of heavy neutrinos ( N-i) and the charged Higgs boson (H-+/-) arising from the second scalar doublet. We have found that production processes such as e(+) e(-) -> NN, e- gamma -> NH- and e(+) e(-) -> H (+) H- followed by the decay chain H-+/--> l(+/-) (i) N, N -> l`(+/-) (j) W (-/+) leads to striking lepton number violation signatures at high energies which may probe the Majorana nature of neutrinos.
Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: aditya.batra@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001039968700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5605
Permanent link to this record
 

 
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S.
Title Global constraints on non-standard neutrino interactions with quarks and electrons Type Journal Article
Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 032 - 42pp
Keywords Neutrino Mixing; Non-Standard Neutrino Properties; Neutrino Interactions
Abstract We derive new constraints on effective four-fermion neutrino non-standard interactions with both quarks and electrons. This is done through the global analysis of neutrino oscillation data and measurements of coherent elastic neutrino-nucleus scattering (CE & nu;NS) obtained with different nuclei. In doing so, we include not only the effects of new physics on neutrino propagation but also on the detection cross section in neutrino experiments which are sensitive to the new physics. We consider both vector and axial-vector neutral-current neutrino interactions and, for each case, we include simultaneously all allowed effective operators in flavour space. To this end, we use the most general parametrization for their Wilson coefficients under the assumption that their neutrino flavour structure is independent of the charged fermion participating in the interaction. The status of the LMA-D solution is assessed for the first time in the case of new interactions taking place simultaneously with up quarks, down quarks, and electrons. One of the main results of our work are the presently allowed regions for the effective combinations of non-standard neutrino couplings, relevant for long-baseline and atmospheric neutrino oscillation experiments.
Address [Coloma, Pilar; Maltoni, Michele] UAM, Inst Fis Teor IFT, CSIC, CFTMAT, Calle Nicolas Cabrera 13-15,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044930400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5606
Permanent link to this record