|   | 
Details
   web
Records
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements Type Journal Article
Year (down) 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages T01002 - 19pp
Keywords Radiation calculations; Time projection Chambers (TPC); Gamma detectors (scintillators, CZT, HPG, HgI etc)
Abstract The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionuclides are summarized, being the values obtained for some materials like copper and stainless steel very competitive. The implications of these results for the NEXT experiment are also discussed.
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320665400083 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1516
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run Type Journal Article
Year (down) 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P07004 - 72pp
Keywords Pattern recognition, cluster finding, calibration and fitting methods; Performance of High Energy Physics Detectors; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics); Analysis and statistical methods
Abstract This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstrates the importance of such event cleaning techniques for some new physics searches.
Address [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000322572900015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1557
Permanent link to this record
 

 
Author Bernal, N.; Martin-Albo, J.; Palomares-Ruiz, S.
Title A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos Type Journal Article
Year (down) 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 011 - 19pp
Keywords dark matter theory; neutrino detectors; neutrino experiments
Abstract Annihilation of dark matter particles accumulated in the Sun would produce a flux of high-energy neutrinos whose prospects of detection in neutrino telescopes and detectors have been extensively discussed in the literature. However, for annihilations into Standard Model particles, there would also be a flux of neutrinos in the MeV range from the decays at rest of muons and positively charged pions. These low-energy neutrinos have never been considered before and they open the possibility to also constrain dark matter annihilation in the Sun into e(+)e(-), mu(+)mu(-) or light quarks. Here we perform a detailed analysis using the recent Super-Kamiokande data in the few tens of MeV range to set limits on the WIMP-nucleon scattering cross section for different annihilation channels and computing the evaporation rate of WIMPs from the Sun for all values of the scattering cross section in a consistent way.
Address [Bernal, Nicolas] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany, Email: nicolas@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000324032800014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1584
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array Type Journal Article
Year (down) 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P09011 - 20pp
Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Particle tracking detectors (Gaseous detectors); Time projection chambers
Abstract NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and “blob” regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q(beta beta)).
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: andrew.laing@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000326680200025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1653
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope Type Journal Article
Year (down) 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 032 - 22pp
Keywords neutrino experiments; dark matter detectors; supersymmetry and cosmology; particle physics – cosmology connection
Abstract A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are comparable with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section in the case of hard self-annihilation channels (W+W-, tau(+)tau(-)).
Address [Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1671
Permanent link to this record
 

 
Author AGATA Collaboration (Akkoyun, S. et al); Algora, A.; Barrientos, D.; Domingo-Pardo, C.; Egea, F.J.; Gadea, A.; Huyuk, T.; Kaci, M.; Mendez, V.; Rubio, B.; Salt, J.; Tain, J.L.
Title AGATA-Advanced GAmma Tracking Array Type Journal Article
Year (down) 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 668 Issue Pages 26-58
Keywords AGATA; gamma-Ray spectroscopy; gamma-Ray tracking; HPGe detectors; Digital signal processing; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations
Abstract The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
Address [Boston, A. J.; Boston, H. C.; Colosimo, S.; Cooper, R. J.; Cresswell, J. R.; Dimmock, M. R.; Filmer, F.; Grint, A. N.; Harkness, L. J.; Judson, D. S.; Mather, A. R.; Moon, S.; Nelson, L.; Nolan, P. J.; Norman, M.; Oxley, D. C.; Rigby, S.; Sampson, J.; Scraggs, D. P.; Seddon, D.; Slee, M.; Stanios, T.; Thornhill, J.; Unsworth, C.; Wells, D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England, Email: a.j.boston@liverpool.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000300864200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 923
Permanent link to this record
 

 
Author Bertone, G.; Cumberbatch, D.; Ruiz de Austri, R.; Trotta, R.
Title Dark Matter searches: the nightmare scenario Type Journal Article
Year (down) 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 004 - 24pp
Keywords dark matter theory; dark matter experiments; neutrino detectors; solar and atmospheric neutrinos
Abstract The unfortunate case where the Large Hadron Collider (LHC) fails to discover physics Beyond the Standard Model (BSM) is sometimes referred to as the “Nightmare scenario” of particle physics. We study the consequences of this hypothetical scenario for Dark Matter (DM), in the framework of the constrained Minimal Supersymmetric Standard Model (cMSSM). We evaluate the surviving regions of the cMSSM parameter space after null searches at the LHC, using several different LHC configurations, and study the consequences for DM searches with ton-scale direct detectors and the IceCube neutrino telescope. We demonstrate that ton-scale direct detection experiments will be able to conclusively probe the cMSSM parameter space that would survive null searches at the LHC with 100 fb(-1) of integrated luminosity at 14TeV. We also demonstrate that IceCube (80 strings plus DeepCore) will be able to probe as much as similar or equal to 17% of the currently favoured parameter space after 5 years of observation.
Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland, Email: bertone@iap.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000300403300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 937
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Schwetz, T.; Zupan, J.
Title On the annual modulation signal in dark matter direct detection Type Journal Article
Year (down) 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 005 - 28pp
Keywords dark matter theory; dark matter experiments; dark matter detectors
Abstract We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of the DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework of spin-independent elastic scattering. While the DAMA signal satisfies our bounds, severe restrictions on the DM mass can be set for CoGeNT.
Address [Herrero-Garcia, Juan; Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: juan.a.herrero@uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000302949600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1000
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title A study of the material in the ATLAS inner detector using secondary hadronic interactions Type Journal Article
Year (down) 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages P01013 - 40pp
Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction; of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Large detector systems for particle and astroparticle physics
Abstract The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from similar to 200 μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.
Address [Aad, G.; Ahles, F.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000303806200127 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1040
Permanent link to this record
 

 
Author Yepes, H.
Title The ANTARES neutrino detector instrumentation Type Journal Article
Year (down) 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages C01022 - 9pp
Keywords Large detector-systems performance; Performance of High Energy Physics Detectors; Detector alignment and calibration methods (lasers, sources, particle-beams)
Abstract ANTARES is actually the fully operational and the largest neutrino telescope in the Northern hemisphere. Located in the Mediterranean Sea, it consists of a 3D array of 885 photomultiplier tubes (PMTs) arranged in 12 detection lines (25 storeys each), able to detect the Cherenkov light induced by upgoing relativistic muons produced in the interaction of high energy cosmic neutrinos with the detector surroundings. Among its physics goals, the search for neutrino astrophysical sources and the indirect detection of dark matter particles coming from the sun are of particular interest. To reach these goals, good accuracy in track reconstruction is mandatory, so several calibration systems for timing and positioning have been developed. In this contribution we will present the design of the detector, calibration systems, associated equipment and its performance on track reconstruction.
Address Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: Harold.Yepes@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000303806200022 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1041
Permanent link to this record