|   | 
Details
   web
Records
Author IDS Collaboration (Andel, B. et al); Algora, A.; Nacher, E.
Title β decay of the ground state and of a low-lying isomer in Bi-216 Type Journal Article
Year (down) 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 109 Issue 6 Pages 064321 - 18pp
Keywords
Abstract A detailed beta -decay study of the low- and high -spin states in 216 Bi has been performed at the ISOLDE Decay Station at the CERN-ISOLDE facility. In total, 48 new levels and 83 new transitions in the beta -decay daughter 216 Po were identified. Shell -model calculations for excited states in 216 Bi and 216 Po were performed using the H208 and the modified Kuo-Herling particle effective interactions. Based on the experimental observations and the shell -model calculations, the most likely spin and parity assignments for the beta -decaying states in 216 Bi are (3 – ) and (8 – ), respectively.
Address [Andel, B.; Antalic, S.; Mosat, P.] Comenius Univ, Dept Nucl Phys & Biophys, Bratislava 84248, Slovakia, Email: boris.andel@fmph.uniba.sk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001255548200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6170
Permanent link to this record
 

 
Author Fernandez Navarro, M.; King, S.F.; Vicente, A.
Title Tri-unification: a separate SU(5) for each fermion family Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 130 - 32pp
Keywords Grand Unification; Theories of Flavour
Abstract In this paper we discuss SU(5)3 with cyclic symmetry as a possible grand unified theory (GUT). The basic idea of such a tri-unification is that there is a separate SU(5) for each fermion family, with the light Higgs doublet(s) arising from the third family SU(5), providing a basis for charged fermion mass hierarchies. SU(5)3 tri-unification reconciles the idea of gauge non-universality with the idea of gauge coupling unification, opening the possibility to build consistent non-universal descriptions of Nature that are valid all the way up to the scale of grand unification. As a concrete example, we propose a grand unified embedding of the tri-hypercharge model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{U}}{\left(1\right)}_{Y}<^>{3}$$\end{document} based on an SU(5)3 framework with cyclic symmetry. We discuss a minimal tri-hypercharge example which can account for all the quark and lepton (including neutrino) masses and mixing parameters. We show that it is possible to unify the many gauge couplings into a single gauge coupling associated with the cyclic SU(5)3 gauge group, by assuming minimal multiplet splitting, together with a set of relatively light colour octet scalars. We also study proton decay in this example, and present the predictions for the proton lifetime in the dominant e+pi 0 channel.
Address [Navarro, Mario Fernandez; King, Stephen F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, England, Email: Mario.FernandezNavarro@glasgow.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001256025400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6171
Permanent link to this record
 

 
Author Chu, X.Y.; Garani, R.; Garcia-Cely, C.; Hambye, T.
Title Dark matter bound-state formation in the Sun Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 045 - 32pp
Keywords Models for Dark Matter; Specific BSM Phenomenology; Neutrino Interactions; Early Universe Particle Physics
Abstract The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
Address [Chu, Xiaoyong] Austrian Acad Sci, Inst High Energy Phys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria, Email: xiaoyong.chu@oeaw.ac.at;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255993100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6172
Permanent link to this record
 

 
Author Giarnetti, A.; Herrero-Garcia, J.; Marciano, S.; Meloni, D.; Vatsyayan, D.
Title Neutrino masses from new Weinberg-like operators: phenomenology of TeV scalar multiplets Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 055 - 37pp
Keywords Baryon/Lepton Number Violation; Multi-Higgs Models
Abstract The unique dimension-5 effective operator, LLHH, known as the Weinberg operator, generates tiny Majorana masses for neutrinos after electroweak spontaneous symmetry breaking. If there are new scalar multiplets that take vacuum expectation values (VEVs), they should not be far from the electroweak scale. Consequently, they may generate new dimension-5 Weinberg-like operators which in turn also contribute to Majorana neutrino masses. In this study, we consider scenarios with one or two new scalars up to quintuplet SU(2) representations. We analyse the scalar potentials, studying whether the new VEVs can be induced and therefore are naturally suppressed, as well as the potential existence of pseudo-Nambu-Goldstone bosons. Additionally, we also obtain general limits on the new scalar multiplets from direct searches at colliders, loop corrections to electroweak precision tests and the W-boson mass.
Address [Giarnetti, Alessio; Marciano, Simone; Meloni, Davide] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy, Email: alessio.giarnetti@uniroma3.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255993100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6173
Permanent link to this record
 

 
Author Belchior, F.M.; Maluf, R.
Title Duality between the Maxwell-Chern-Simons and self-dual models in very special relativity Type Journal Article
Year (down) 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 855 Issue Pages 138794 - 7pp
Keywords Duality; Very special relativity; Maxwell-Chern-Simons theory
Abstract This work investigates the classical and quantum duality between the SIM (1)-Maxwell-Chern-Simons (MCS) model and its self -dual counterpart. Initially, we focus on free -field cases to establish equivalence through two distinct approaches: comparing the equations of motion and utilizing the master Lagrangian method. In both instances, the classical correspondence between the self -dual and MCS dual fields undergoes modifications due to very special relativity (VSR). Specifically, the duality is established when the associated VSR-mass parameters are identical, and the dual field is introduced through a non -local VSR correction. Furthermore, we analyze the duality when the self -dual model is minimally coupled to fermions. As a result, we demonstrate that Thirring-like interactions, corrected for non -local VSR contributions, are included in the MCS model. Additionally, we establish the quantum equivalence of the models by performing a functional integration of the fields and comparing the resulting effective Lagrangians.
Address [Belchior, Fernando M.; Maluf, Roberto, V] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001259074700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6174
Permanent link to this record