|   | 
Details
   web
Records
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration Type Journal Article
Year (down) 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 4 Pages 322 - 51pp
Keywords
Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: lkoerner@central.uh.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000641453500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4809
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Supernova neutrino burst detection with the Deep Underground Neutrino Experiment Type Journal Article
Year (down) 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 5 Pages 423 - 26pp
Keywords
Abstract The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.
Address [Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000661101700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4859
Permanent link to this record
 

 
Author Barenboim, G.; Turner, J.; Zhou, Y.L.
Title Light neutrino masses from gravitational condensation: the Schwinger-Dyson approach Type Journal Article
Year (down) 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 6 Pages 511 - 12pp
Keywords
Abstract In this work we demonstrate that non-zero neutrino masses can be generated from gravitational interactions. We solve the Schwinger-Dyson equations to find a non-trivial vacuum thereby determining the neutrino condensate scale and the number of new particle degrees of freedom required for gravitationally induced dynamical chiral symmetry breaking. We show for minimal beyond the Standard Model particle content, the scale of the condensation occurs close to the Planck scale.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, Burjassot 46100, Spain, Email: jessica.turner@durham.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000660017000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4863
Permanent link to this record
 

 
Author Barenboim, G.; Hirn, J.; Sanz, V.
Title Symmetry meets AI Type Journal Article
Year (down) 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 11 Issue 1 Pages 014 - 11pp
Keywords
Abstract We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics templates, where no information on symmetry is provided. We use the output from the last hidden layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task, and show that information on symmetry had indeed been identified by the original NN without guidance. As an interdisciplinary application of this procedure, we identify the presence and level of symmetry in artistic paintings from different styles such as those of Picasso, Pollock and Van Gogh.
Address [Barenboim, Gabriela; Hirn, Johannes; Sanz, Veronica] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000680039500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4920
Permanent link to this record
 

 
Author Barenboim, G.; Nierste, U.
Title Modified majoron model for cosmological anomalies Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 2 Pages 023013 - 6pp
Keywords
Abstract The vacuum expectation value v(s) of a Higgs triplet field Delta carrying two units of lepton number L induces neutrino masses alpha v(s). The neutral component of Delta gives rise to two Higgs particles, a pseudoscalar A and a scalar S. The most general renormalizable Higgs potential V for Delta and the Standard-Model Higgs doublet Phi does not permit the possibility that the mass of either A or S is small, of order v(s), while the other mass is heavy enough to forbid the decay Z -> AS to comply with LEP 1 data. We present a model with additional dimension-6 terms in V, in which this feature is absent and either A or S can be chosen light. Subsequently we propose the model as a remedy to cosmological anomalies, namely the tension between observed and predicted tensor-to-scalar mode ratios in the cosmic microwave background and the different values of the Hubble constant measured at different cosmological scales. Furthermore, if Delta dominantly couples to the third-generation doublet L-tau = (v(tau), tau), the deficit of v(tau) events at IceCube can be explained. The singly and doubly charged triplet Higgs bosons are lighter than 280 GeV and 400 GeV, respectively, and could be found at the LHC.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, Ave Doctor Moliner 50, E-46100 Valencia, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000674578400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4915
Permanent link to this record