toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Studen, A.; Chesi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Linhart, V.; Mikuz, M.; Stankova, V.; Weilhammer, P.; Zontar, D. doi  openurl
  Title A silicon PET probe Type Journal Article
  Year (down) 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 648 Issue Pages S255-S258  
  Keywords PET; Silicon detectors  
  Abstract PET scanners with high spatial resolution offer a great potential in improving diagnosis, therapy monitoring and treatment validation for several severe diseases. One way to improve resolution of a PET scanner is to extend a conventional PET ring with a small probe with excellent spatial resolution. The probe is intended to be placed close to the area of interest. The coincidences of interactions within the probe and the external ring provide a subset of data which combined with data from external ring, greatly improve resolution in the area viewed by the probe. Our collaboration is developing a prototype of a PET probe, composed of high-resolution silicon pad detectors. The detectors are 1 mm thick, measuring 40 by 26 mm(2), and several such sensors are envisaged to either compensate for low stopping power of silicon or increase the area covered by the probe. The sensors are segmented into 1 mm(3) cubic voxels, giving 1040 readout pads per sensor. A module is composed of two sensors placed in a back-to-back configuration, allowing for stacking fraction of up to 70% within a module. The pads are coupled to a set of 16 ASICs (VaTaGP7.1 by IDEAS) per module and read out through a custom designed data acquisition board, allowing for trigger and data interfacing with the external ring. This paper presents an overview of probe requirements and expected performance parameters. It will focus on the characteristics of the silicon modules and their impact on overall probe performance, including spatial resolution, energy resolution and timing resolution. We will show that 1 mm(3) voxels will significantly extend the spatial resolution of conventional PET rings, and that broadening of timing resolution related to varying depth of photon interactions can be compensated to match the timing resolution of the external ring. The initial test results of the probe will also be presented.  
  Address [Studen, A.; Cindro, V.; Grosicar, B.; Mikuz, M.; Zontar, D.] Jozef Stefan Inst, Ljubljana, Slovenia, Email: andrej.studen@ijs.si  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1070  
Permanent link to this record
 

 
Author AGATA Collaboration; Doncel, M.; Quintana, B.; Gadea, A.; Recchia, F.; Farnea, E. doi  openurl
  Title Background rejection capabilities of a Compton imaging telescope setup with a DSSD Ge planar detector and AGATA Type Journal Article
  Year (down) 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 648 Issue Pages S131-S134  
  Keywords gamma-Spectroscopy; Gamma tracking; Imaging; Position-sensitive germanium detectors  
  Abstract In this work, we show the first Monte Carlo results about the performance of the Ge array which we propose for the DESPEC experiment at FAIR, when the background algorithm developed for AGATA is applied. The main objective of our study is to characterize the capabilities of the gamma-spectroscopy system, made up of AGATA detectors in a semi-spherical distribution covering a 1 pi solid angle and a set of planar Ge detectors in a daisy configuration, to discriminate between gamma sources placed at different locations.  
  Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain, Email: doncel@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305376900035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1071  
Permanent link to this record
 

 
Author ATLAS Collaboration (Adragna, P. et al); Castelo, J.; Castillo Gimenez, V.; Cuenca, C.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter Type Journal Article
  Year (down) 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 615 Issue 2 Pages 158-181  
  Keywords Calorimeter; Test-beam; ATLAS; Monte Carlo simulation; GEANT4; Hadronic shower development; Pion-proton response; Longitudinal shower profile for hadrons  
  Abstract The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.  
  Address [Hakobyan, H.; Simonyan, M.] Yerevan Phys Inst, Yerevan 375036, Armenia, Email: Margar.Simonyan@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276299900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 252  
Permanent link to this record
 

 
Author AGATA Collaboration; Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E. doi  openurl
  Title Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector Type Journal Article
  Year (down) 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 622 Issue 3 Pages 614-618  
  Keywords Gamma spectroscopy; Gamma tracking; Imaging; Position-sensitive germanium detectors  
  Abstract The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the gamma-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the gamma rays originated outside the target, the new generation of position sensitive gamma-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the gamma rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back gamma rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.  
  Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain, Email: doncel@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282562700017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 257  
Permanent link to this record
 

 
Author AGATA Collaboration; Farnea, E.; Recchia, F.; Bazzacco, D.; Kroll, T.; Podolyak, Z.; Quintana, B.; Gadea, A. doi  openurl
  Title Conceptual design and Monte Carlo simulations of the AGATA array Type Journal Article
  Year (down) 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 621 Issue 1-3 Pages 331-343  
  Keywords Monte Carlo code; gamma-ray tracking array  
  Abstract The aim of the Advanced GAmma Tracking Array (AGATA) project is the construction of an array based on the novel concepts of pulse shape analysis and gamma-ray tracking with highly segmented Ge semiconductor detectors. The conceptual design of AGATA and its performance evaluation under different experimental conditions has required the development of a suitable Monte Carlo code. In this article, the description of the code as well as simulation results relevant for AGATA, are presented.  
  Address [Farnea, E.; Recchia, F.; Bazzacco, D.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy, Email: Enrico.Farnea@pd.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281109100045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 390  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva