LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). A search for rare B → D μ+ μ- decays. J. High Energy Phys., 02(2), 032–23pp.
Abstract: A search for rare B. D mu+ mu- decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb-1. No significant signals are observed in the non-resonant mu+ mu- modes, and upper limits of B -> B0. D0 mu+ mu- < 5.1 x 10-8, B B+. D+ s mu+ mu- -> < 3.2 x 10-8, B -> B0 s. D0 mu+ mu--> < 1.6 x 10-7 and fc/fu center dot B B+ c. D+ s mu+ mu--> < 9.6 x 10-8 are set at the 95% confidence level, where fc and fu are the fragmentation fractions of a B meson with a c and u quark respectively in proton-proton collisions. Each result is either the first such measurement or an improvement by three orders of magnitude on an existing limit. Separate upper limits are calculated when the muon pair originates from a J/.. mu+ mu- decay. The branching fraction of B+ c. D+ s J/. multiplied by the fragmentation-fraction ratio is measured to be fc fu center dot B -> B+ c. D+ s J/.-> = (1.63 +/- 0.15 +/- 0.13) x 10-5, where the first uncertainty is statistical and the second systematic.
|
Chen, M. C., King, S. F., Medina, O., & Valle, J. W. F. (2024). Quark-lepton mass relations from modular flavor symmetry. J. High Energy Phys., 02(2), 160–28pp.
Abstract: The so-called Golden Mass Relation provides a testable correlation between charged-lepton and down-type quark masses, that arises in certain flavor models that do not rely on Grand Unification. Such models typically involve broken family symmetries. In this work, we demonstrate that realistic fermion mass relations can emerge naturally in modular invariant models, without relying on ad hoc flavon alignments. We provide a model-independent derivation of a class of mass relations that are experimentally testable. These relations are determined by both the Clebsch-Gordan coefficients of the specific finite modular group and the expansion coefficients of its modular forms, thus offering potential probes of modular invariant models. As a detailed example, we present a set of viable mass relations based on the Gamma 4 approximately equal to S4 symmetry, which have calculable deviations from the usual Golden Mass Relation.
|
Baran, J. et al, & Brzezinski, K. (2024). Feasibility of the J-PET to monitor the range of therapeutic proton beams. Phys. Medica, 118, 103301–9pp.
Abstract: Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.
|
n_TOF Collaboration(Alcayne, V. et al), Balibrea-Correa, J., Domingo-Pardo, C., Lerendegui-Marco, J., Babiano-Suarez, V., & Ladarescu, I. (2024). A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2. Radiat. Phys. Chem., 217, 111525–11pp.
Abstract: The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.
|
Baeza-Ballesteros, J., Bijnens, J., Husek, T., Romero-Lopez, F., Sharpe, S. R., & Sjo, M. (2024). The three-pion K-matrix at NLO in ChPT. J. High Energy Phys., 03(3), 048–43pp.
Abstract: The three-particle K-matrix, K-df,K-3, is a scheme-dependent quantity that parametrizes short-range three-particle interactions in the relativistic-field-theory three-particle finite-volume formalism. In this work, we compute its value for systems of three pions in all isospin channels through next-to-leading order in Chiral Perturbation Theory, generalizing previous work done at maximum isospin. We obtain analytic expressions through quadratic order (or cubic order, in the case of zero isospin) in the expansion about the three-pion threshold.
|