|   | 
Details
   web
Records
Author Chen, M.C.; Li, X.Q.; Liu, X.G.; Medina, O.; Ratz, M.
Title Modular invariant holomorphic observables Type Journal Article
Year (down) 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 852 Issue Pages 138600 - 13pp
Keywords
Abstract In modular invariant models of flavor, observables must be modular invariant. The observables discussed so far in the literature are functions of the modulus tau and its conjugate, (tau) over bar. We point out that certain combinations of observables depend only on tau , i.e. are meromorphic, and in some cases even holomorphic functions of tau. These functions, which we dub “invariants” in this Letter, are highly constrained, renormalization group invariant, and allow us to derive many of the models' features without the need for extensive parameter scans. We illustrate the robustness of these invariants in two existing models in the literature based on modular symmetries, Gamma(3) and Gamma(5). We find that, in some cases, the invariants give rise to robust relations among physical observables that are independent of tau. Furthermore, there are instances where additional symmetries exist among the invariants. These symmetries are relevant phenomenologically and may provide a dynamical way to realize symmetries of mass matrices.
Address [Chen, Mu-Chun; Li, Xueqi; Liu, Xiang-Gan; Ratz, Michael] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: muchunc@uci.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001221253800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6125
Permanent link to this record
 

 
Author Barenboim, G.; Calatayud-Cadenillas, A.M.; Gago, A.M.; Ternes, C.A.
Title Quantum decoherence effects on precision measurements at DUNE and T2HK Type Journal Article
Year (down) 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 852 Issue Pages 138626 - 11pp
Keywords
Abstract We investigate the potential impact of neutrino quantum decoherence on the precision measurements of standard neutrino oscillation parameters in the DUNE and T2HK experiments. We show that the measurement of delta(CP), sin(2) theta(13) and sin(2) theta(23) is stronger effected in DUNE than in T2HK. On the other hand, DUNE would have a better sensitivity than T2HK to observe decoherence effects. By performing a combined analysis of DUNE and T2HK we show that a robust measurement of standard parameters would be possible, which is not guaranteed with DUNE data alone.
Address [Barenboim, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001229361000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6131
Permanent link to this record
 

 
Author Montesinos, V.; Albaladejo, M.; Nieves, J.; Tolos, L.
Title Charge-conjugation asymmetry and molecular content: The Ds0*(2317)± in matter Type Journal Article
Year (down) 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 853 Issue Pages 138656 - 10pp
Keywords
Abstract We analyze the modifications that a dense nuclear medium induces in the D-s0*(2317)(+/-) and D-s1(2460)(+/-). In the vacuum, we consider them as isoscalar D-(*K-) and (D) over bar (()*())(K) over bar S-wave bound states, which are dynamically generated from effective interactions that lead to different Weinberg compositeness scenarios. Matter effects are incorporated through the two-meson loop functions, taking into account the self energies that the D-(*()), (D) over bar (()*()), K, and (K) over bar develop when embedded in a nuclear medium. Although particle-antiparticle [D-s0,s1(()*())(2317,2460)(+) versus D-s0,s1(()*())(2317,2460)(-)] lineshapes are the same in vacuum, we find extremely different density patterns in matter. This charge-conjugation asymmetry mainly stems from the very different kaon and antikaon interaction with the nucleons of the dense medium. We show that the in-medium lineshapes found for these resonances strongly depend on their D-(*()), K/(D) over bar (()*()), K molecular content, and discuss how this novel feature can be used to better determine/constrain the inner structure of these exotic states.
Address [Montesinos, V.; Albaladejo, M.; Nieves, J.] UV, Inst Fis Corpuscular, Inst Invest Paterna, Ctr Mixto,CSIC, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: Victor.Montesinos@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001218202500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6137
Permanent link to this record
 

 
Author Hajjar, R.; Palomares-Ruiz, S.; Mena, O.
Title Shedding light on the Δm21^2 tension with supernova neutrinos Type Journal Article
Year (down) 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 854 Issue Pages 138719 - 8pp
Keywords
Abstract One long-standing tension in the determination of neutrino parameters is the mismatched value of the solar mass square difference, Delta m(21)(2), measured by different experiments: the reactor antineutrino experiment KamLAND finds a best fit larger than the one obtained with solar neutrino data. Even if the current tension is mild (similar to 1.5 sigma.), it is timely to explore if independent measurements could help in either closing or reassessing this issue. In this regard, we explore how a future supernova burst in our galaxy could be used to determine Delta m(21)(2) at the future Hyper-Kamiokande detector, and how this could contribute to the current situation. We study Earth matter effects for different models of supernova neutrino spectra and supernova orientations. We find that, if supernova neutrino data prefers the KamLAND best fit for Delta m(21)(2), an uncertainty similar to the current KamLAND one could be achieved. On the contrary, if it prefers the solar neutrino data best fit, the current tension with KamLAND results could grow to a significance larger than 5 sigma. Furthermore, supernova neutrinos could significantly contribute to reducing the uncertainty on sin (2)theta(12).
Address [Hajjar, Rasmi; Palomares-Ruiz, Sergio; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV, C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: rasmi.hajjar@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001246913500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6159
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Zare, S.; Porffrio, P.J.; Kriz, J.; Hassanabadi, H.
Title Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory Type Journal Article
Year (down) 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 838 Issue Pages 137744 - 9pp
Keywords Thermodynamic properties; Black hole; Non-commutative gauge theory; Evaporation process
Abstract In this work, we study the thermodynamic properties on a non-commutative background via gravitational gauge field potentials. This procedure is accomplished after contracting de Sitter (dS) group, SO(4, 1), with the Poincare group, ISO(3, 1). Particularly, we focus on a static spherically symmetric black hole. In this manner, we calculate the modified Hawking temperature and the other deformed thermal state quantities, namely, entropy, heat capacity, Helmholtz free energy and pressure. Finally, we also investigate the black hole evaporation process in such a context.
Address [Araujo Filho, A. A.] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000935398000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5483
Permanent link to this record