Lessa, L. A., & Olmo, G. J. (2025). On the structure of black bounces sourced by anisotropic fluids. J. Cosmol. Astropart. Phys., 03(3), 019–18pp.
Abstract: The field equations of static, spherically symmetric geometries generated by anisotropic fluids is investigated with the aim of better understanding the relation between the matter and the emergence of minimal area throats, like in wormhole and black bounce scenarios. Imposing some simplifying restrictions on the matter, which amounts to considering nonlinear electromagnetic sources, we find analytical expressions that allow one to design the type of sought geometries. We illustrate our analysis with several examples, including an asymmetric, bounded black bounce spacetime which reproduces the standard ReissnerNordstr & ouml;m geometry on the outside all the way down to the throat.
|
Bombacigno, F., De Angelis, M., van de Bruck, C., & Giare, W. (2025). Inflation in non-local hybrid metric-Palatini gravity. J. Cosmol. Astropart. Phys., 05(5), 025–30pp.
Abstract: Within the framework of hybrid metric-Palatini gravity, we incorporate non-localities introduced via the inverse of the d'Alembert operators acting on the scalar curvature. We analyze the dynamical structure of the theory and, adopting a scalar-tensor perspective, assess the stability conditions to ensure the absence of ghost instabilities. Focusing on a special class of well-defined hybrid actions where local and non-local contributions are carried by distinct types of curvature we investigate the feasibility of inflation within the resulting Einstein-frame multi-field scenario. We examine how the non-minimal kinetic couplings between the fields, reflecting the non-local structure of the original frame, influence the number of e-folds and the field trajectories. To clarify the physical interpretation of our results, we draw analogies with benchmark single-field inflation scenarios that include spectator fields.
|
Lessa, L. A., Maluf, R. V., Silva, J. E. G., & Almeida, C. A. S. (2024). Braneworlds in warped Einsteinian cubic gravity. J. Cosmol. Astropart. Phys., 05(5), 123–25pp.
Abstract: Einstenian cubic gravity (ECG) is a modified theory of gravity constructed with cubic contractions of the curvature tensor. This theory has the remarkable feature of having the same two propagating degrees of freedom of Einstein gravity (EG), at the perturbative level on maximally symmetric spacetimes. The additional unstable modes steaming from the higher order derivative dynamics are suppressed provided that we consider the ECG as an effective field theory wherein the cubic terms are seen as perturbative corrections of the Einstein -Hilbert term. Extensions of ECG have been proposed in cosmology and compact objects in order to probe if this property holds in more general configurations. In this work, we construct a modified ECG gravity in a five dimensional warped braneworld scenario. By assuming a specific combination of the cubic parameters, we obtained modified gravity equations of motion with terms up to second -order. For a thin 3-brane, the cubic -gravity corrections yield an effective positive bulk cosmological constant. Thus, in order to keep the 5D bulk warped compact, an upper bound of the cubic parameter with respect to the bulk curvature was imposed. For a thick brane, the cubic -gravity terms modify the scalar field potential and its corresponding vacuum. Nonetheless, the domain -wall structure with a localized source is preserved. At the perturbative level, the Kaluza-Klein (KK) tensor gravitational modes are stable and possess a localized massless mode provided the cubic corrections are small compared to the EG braneworld.
|
Magalhaes, R. B., Ribeiro, G. P., Lima, H. C. D. J., Olmo, G. J., & Crispino, L. C. B. (2024). Singular space-times with bounded algebraic curvature scalars. J. Cosmol. Astropart. Phys., 05(5), 114–34pp.
Abstract: We show that the absence of unbounded algebraic curvature invariants constructed from polynomials of the Riemann tensor cannot guarantee the absence of strong singularities. As a consequence, it is not sufficient to rely solely on the analysis of such scalars to assess the regularity of a given space-time. This conclusion follows from the analysis of incomplete geodesics within the internal region of asymmetric wormholes supported by scalar matter which arise in two distinct metric-affine gravity theories. These wormholes have bounded algebraic curvature scalars everywhere, which highlights that their finiteness does not prevent the emergence of pathologies (singularities) in the geodesic structure of space-time. By analyzing the tidal forces in the internal wormhole region, we find that the angular components are unbounded along incomplete radial time-like geodesics. The strength of the singularity is determined by the evolution of Jacobi fields along such geodesics, finding that it is of strong type, as volume elements are torn apart as the singularity is approached. Lastly, and for completeness, we consider the wormhole of the quadratic Palatini theory and present an analysis of the tidal forces in the entire space-time.
|
Maso-Ferrando, A., Sanchis-Gual, N., Font, J. A., & Olmo, G. J. (2023). Birth of baby universes from gravitational collapse in a modified-gravity scenario. J. Cosmol. Astropart. Phys., 06(6), 028–19pp.
Abstract: We consider equilibrium models of spherical boson stars in Palatini f (R) = R + CR2 gravity and study their collapse when perturbed. The Einstein-Klein-Gordon system is solved using a recently established correspondence in an Einstein frame representation. We find that, in that frame, the endpoint is a nonrotating black hole surrounded by a quasi -stationary cloud of scalar field. However, the dynamics in the f (R) frame is dramatically different. The innermost region of the collapsing object exhibits the formation of a finite -size, exponentially-expanding baby universe connected with the outer (parent) universe via a minimal area surface (a throat or umbilical cord). Our simulations indicate that this surface is at all times hidden inside a horizon, causally disconnecting the baby universe from observers above the horizon. The implications of our findings in other areas of gravitational physics are also discussed.
|