Martinez-Reviriego, P., Fuster-Martinez, N., Esperante, D., Boronat, M., Gimeno, B., Blanch, C., et al. (2025). High-power performance studies of an S-band high-gradient accelerating cavity for medical applications. Nucl. Eng. Technol., 57(1), 103164–10pp.
Abstract: High-Gradient accelerating cavities are one of the main research lines in the development of compact linear accelerators. However, the operation of such accelerating cavities is currently limited by non-linear electromagnetic effects that are intensified at high electric fields, such as RF breakdowns, dark currents and radiation. A novel normal-conducting High Gradient S-band Backward Travelling Wave accelerating cavity for medical application (v = 0.38c) has been designed and constructed at CERN with a design gradient of 50 MV/m. In this paper, the high-power performance studies of this novel design carried out at the IFIC high-power laboratory are presented, as well as the analysis of the conditioning parameters in combination with numerical simulations.
|
Gonzalez-Iglesias, D., Gimeno, B., Esperante, D., Martinez-Reviriego, P., Martin-Luna, P., Fuster-Martinez, N., et al. (2024). Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures. Results Phys., 56, 107245–12pp.
Abstract: The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.
|
Martinez-Reviriego, P., Esperante, D., Grudiev, A., Gimeno, B., Blanch, C., Gonzalez-Iglesias, D., et al. (2024). Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments. Front. Physics, 12, 1345237–12pp.
Abstract: Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM02-pi mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 M omega/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.
|
Gonzalez-Iglesias, D., Gimeno, B., Esperante, D., Martinez-Reviriego, P., Martin-Luna, P., Pedraza, L. K., et al. (2024). A rapid method for prediction of the non-resonant ultra-fast multipactor regime in high gradient RF accelerating structures. Results Phys., 64, 107921–9pp.
Abstract: The purpose of this work is to present an analytical method that allows to estimate in an approximate and fast way the presence of the non-resonant and ultra-fast multipactor effect in RF accelerating structures in the presence of high gradient electromagnetic fields. This single-surface multipactor regime, which has been little studied in the scientific literature, is characterised by appearing only under conditions of very strong RF electric fields (of the order of tens or hundreds of MV/m), where it is predominant over other types of single- or dual-surface resonance described in classical multipactor theory. This type of multipactor causes a rapid growth of the electron population and poses a serious drawback in the operation of RF accelerator components operating under high gradient conditions. Specifically, in dielectric-assist accelerating structures (DAA) it has been experimentally found that the presence of multipactor limits the maximum operating gradient of these components due to a significant increase in the reflected power due to the discharge, being this phenomenon the main problem to overcome. In a previous work, we found and described in detail by means of numerical simulations the presence of this non-resonant and ultra-fast multipactor regime in a DAA structure design for hadrontherapy. Here we aim to present a simple and fast method to predict the presence of this non-resonant and ultra-fast multipactor regime in RF accelerator structures with cylindrical revolution symmetry around the acceleration axis. This method is especially useful in the design stages of accelerating structures as it provides much faster results than numerical simulations of the multipactor, with quite good accuracy in a wide range of cases as shown in this paper.
|
Vnuchenko, A., Esperante Pereira, D., Gimeno, B., Benedetti, S., Catalan Lasheras, N., Garlasch, M., et al. (2020). High-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure. Phys. Rev. Accel. Beams, 23(8), 084801–13pp.
Abstract: A novel high-gradient accelerating structure with low phase velocity, v/c = 0.38, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC 100 MV/m high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward traveling wave (BTW) with a phase advance of 150 degrees and has an active length of 19 cm. The main objective for designing and testing this structure was to demonstrate that low velocity particles, in particular protons, can be accelerated with high gradients. In addition, the performance of this structure compared to other type of structures provides insights into the factors that limit high gradient operation. The structure was conditioned successfully to high gradient using the same protocol as for CLIC X-band structures. However, after the high power test, data analysis realized that the structure had been installed backwards, that is, the input power had been fed into what is nominally the output end of the structure. This resulted in higher peak fields at the power feed end and a steeply decreasing field profile along the structure, rather than the intended near constant field and gradient profile. A local accelerating gradient of 81 MV/m near the input end was achieved at a pulse length of 1.2 μs and with a breakdown rate (BDR) of 7.2 x 10(-7) 1 /pulse/m. The reverse configuration was accidental but the operating with this field condition gave very important insights into high-gradient behaviour and a comprehensive analysis has been carried out. A particular attention was paid to the characterization of the distribution of BD positions along the structure and within a cell.
|