Home | << 1 2 3 4 5 6 7 8 9 >> |
![]() |
Gariazzo, S., Giare, W., Mena, O., & Di Valentino, E. (2025). How robust are the parameter constraints extending the ΛCDM model? Phys. Rev. D, 111(2), 023540–24pp.
Abstract: We present model-marginalized limits on the six standard.CDM cosmological parameters (Omega(c) h(2), Omega(b) h(2), theta(MC), tau(reio), n(s) and A(s)), as well as on selected derived quantities (H-0, Omega(m), sigma(8), S-8 and r(drag)), obtained by considering several extensions of the.CDM model and three independent cosmic microwave background (CMB) experiments: the Planck satellite, the Atacama Cosmology Telescope, and South Pole Telescope. We also consider low redshift observations in the form of baryon acoustic oscillation (BAO) data from the SDSS-IV eBOSS survey and supernovae (SN) distance moduli measurements from the Pantheon-Plus catalog. The marginalized errors are stable against the different minimal extensions of the Lambda CDM model explored in this study. The largest impact on the parameter accuracy is produced by varying the effective number of relativistic degrees of freedom (N-eff) or the lensing amplitude (A(lens)). Nevertheless, the marginalized errors on some derived parameters such as H-0 or Omega(m) can be up to 2 orders of magnitude larger than in the canonical Lambda CDM scenario when considering only CMB data. In these cases, low redshift measurements are crucial for restoring the stability of the marginalized cosmological errors computed here. Overall, our results underscore remarkable stability in the mean values and precision of the main cosmological parameters once both high and low redshift probes are fully accounted for. The marginalized values can be used in numerical analyses due to their robustness and slightly larger errors, providing a more realistic and conservative approach.
|
Wang, D., Mena, O., Di Valentino, E., & Gariazzo, S. (2024). Updating neutrino mass constraints with background measurements. Phys. Rev. D, 110(10), 103536–8pp.
Abstract: Low-redshift probes, such as baryon acoustic oscillations (BAO) and supernovae Ia luminosity distances, have been shown to be crucial for improving the bounds on the total neutrino mass from cosmological observations, due to their ability to break degeneracies among the different parameters. Here, we expand background observations to include H(z) measurements from cosmic chronometers, distance moduli from gamma ray bursts (GRBs), and angular diameter distances from galaxy clusters. For the first time, using the physically motivated assumption of positive neutrino mass, we find that neutrino mass limits could be at 95% CL below the minimal expectations from neutrino oscillation probes, suggesting possible nonstandard neutrino and/or cosmological scenarios. Interestingly, it is not only the combination of the three background probes that is responsible for the Sigma m(v) <0.06 eV limits, but also each of them independently. The tightest bound we find here is Sigma m(v) <0.043 eV at 95% CL after combining cosmic microwave background Planck data with DESI BAO, supernovae Ia, GRBs, cosmic chronometers, and galaxy clusters, showing a clear tension between neutrino oscillation results and cosmological analyses. In general, removing each one of three background probes still provides a limit Sigma m(v) less than or similar to 0.06 eV, reassuring the enormous potential of these low-redshift observations in constraining the neutrino mass.
|
Gariazzo, S., Martinez-Mirave, P., Mena, O., Pastor, S., & Tortola, M. (2023). Non-unitary three-neutrino mixing in the early Universe. J. Cosmol. Astropart. Phys., 03(3), 046–18pp.
Abstract: Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Keywords: cosmological neutrinos; neutrino properties; neutrino theory
|
Di Valentino, E., Gariazzo, S., Giare, W., Melchiorri, A., Mena, O., & Renzi, F. (2023). Novel model-marginalized cosmological bound on the QCD axion mass. Phys. Rev. D, 107(10), 103528–16pp.
Abstract: We present model-marginalized limits on mixed hot dark matter scenarios, which consider both thermal neutrinos and thermal QCD axions. A novel aspect of our analyses is the inclusion of small-scale cosmic microwave background (CMB) observations from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), together with those from the Planck satellite and baryon acoustic oscillation (BAO) data. After marginalizing over a number of well-motivated nonminimal background cosmologies, the tightest 95% Confidential Level (CL) upper bound we obtain is 0.21 eV, both for P m nu and ma, from the combination of ACT, Planck and BAO measurements. Restricting the analyses to the standard ?CDM picture, we find P m nu < 0.16 eV and ma < 0.18 eV, both at 95% CL Interestingly, the best background cosmology is never found within the minimal ?CDM plus hot relics, regardless of the datasets exploited in the analyses. The combination of Planck with either BAO, SPT or ACT prefers a universe with a nonzero value of the running in the primordial power spectrum with strong evidence. Small-scale CMB probes, both alone and combined with BAO, either prefer, with substantial evidence, nonflat universes (as in the case of SPT) or a model with a time varying dark energy component (as in the case of ACT).
|
Gariazzo, S., Mena, O., & Schwetz, T. (2023). Quantifying the tension between cosmological and terrestrial constraints on neutrino masses. Phys. Dark Universe, 40, 101226–8pp.
Abstract: The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.
|