|   | 
Details
   web
Records
Author de Putter, R.; Wagner, C.; Mena, O.; Verde, L.; Percival, W.J.
Title Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance Type Journal Article
Year (down) 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 019 - 31pp
Keywords galaxy clustering; power spectrum; cosmological simulations; dark matter simulations
Abstract Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only similar to 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc(-1) at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc(-1). As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.
Address [de Putter, Roland; Wagner, Christian; Verde, Lica] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@berkeley.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000303665000019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1016
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title A study of the material in the ATLAS inner detector using secondary hadronic interactions Type Journal Article
Year (down) 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages P01013 - 40pp
Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction; of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Large detector systems for particle and astroparticle physics
Abstract The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from similar to 200 μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.
Address [Aad, G.; Ahles, F.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000303806200127 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1040
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title The positioning system of the ANTARES Neutrino Telescope Type Journal Article
Year (down) 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages T08002 - 20pp
Keywords Timing detectors; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Detector alignment and calibration methods (lasers, sources, particle-beams); Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases)
Abstract The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.
Address [Anton, G.; Eberl, T.; Enzenhoefer, A.; Folger, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Lahmann, R.; Meli, A.; Motz, H.; Neff, M.; Richardt, C.; Richter, R.; Roensch, K.; Schoeck, F.; Seitz, T.; Shanidze, R.; Spies, A.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: juergen.hoessl@physik.uni-erlangen.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000308869800043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1176
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Dalal, N.
Title Cores and cusps in warm dark matter halos Type Journal Article
Year (down) 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 024 - 16pp
Keywords dark matter theory; dark matter simulations; dwarfs galaxies; rotation curves of galaxies
Abstract The apparent presence of large core radii in Low Surface Brightness galaxies has been claimed as evidence in favor of warm dark matter. Here we show that WDM halos do not have cores that are large fractions of the halo size: typically, r(core)/r(200) less than or similar to 10(-3). This suggests an astrophysical origin for the large cores observed in these galaxies, as has been argued by other authors.
Address [Villaescusa-Navarro, Francisco] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: villa@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000291258300024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 641
Permanent link to this record
 

 
Author AGATA Collaboration (Soderstrom, P.A. et al); Gadea, A.
Title Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors Type Journal Article
Year (down) 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 638 Issue 1 Pages 96-109
Keywords gamma-ray tracking; AGATA; Monte Carlo simulations; HPGe detectors; Fusion-evaporation reactions
Abstract The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected gamma-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted gamma-ray. The gamma-ray tracking was used to determine the full energy of the gamma-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1 mm in the FVVHM of the interaction position resolution for the gamma-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a (30)5i beam at 64 MeV on a thin C-12 target. Pulse-shape analysis of the digitized detector waveforms and gamma-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the gamma-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FVVHM of the interaction position resolution varies roughly linearly as a function of gamma-ray energy from 8.5 mm at 250 key to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the gamma-ray energy range from 1.5 to 4 MeV.
Address [Soderstrom, P. -A.; Nyberg, J.; Al-Adili, A.; Atac, A.; Veyssiere, C.] Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden, Email: P-A.Soderstrom@physics.uu.se
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000290082600015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 619
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory Type Journal Article
Year (down) 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 635 Issue 1 Pages 92-102
Keywords Cosmic rays; Radio detection; Analysis software; Detector simulation
Abstract The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.
Address [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany, Email: auger_pc@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000289317100017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 606
Permanent link to this record
 

 
Author Hornillos, M.B.G.; Gorlychev, V.; Caballero, R.; Cortes, G.; Poch, A.; Pretel, C.; Calvino, F.; Tain, J.L.; Algora, A.; Agramunt, J.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Rissanen, J.; Aysto, J.; Jokinen, A.; Eronen, T.; Moore, I.; Penttila, H.
Title Monte Carlo Simulations for the Study of a Moderated Neutron Detector Type Journal Article
Year (down) 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 1573-1576
Keywords Monte Carlo simulations; GEANT4; MCNPX; Beta delayed neutron emission; Neutron detector
Abstract This work presents the Monte Carlo simulations performed with the MCNPX and GEANT4 codes for the design of a BEta deLayEd Neutron detector, BELEN-20. This detector will be used for the study of beta delayed neutron emission and consists of a block of polyethylene with dimensions 90 x 90 x 80 cm(3) and 20 cylindrical (3)He gas counters. The results of these simulations have been validated experimentally with a (252)Cf source in the laboratory at UPC, Barcelona. Also the first experiment with this detector has been carried out in November 2009 in JYFL, Finland. In this experiment the neutron emission probability after beta decay of the fission products (88)Br, (94,95)Rb, and (138)I has been measured; this data is still under analysis. Simulations with MCNPX and GEANT4 have been performed in order to obtain the efficiency of the BELEN-20 detector for each of the above nuclei using the neutron energy distribution corresponding to each nucleus.
Address [Hornillos, MBG; Gorlychev, V; Caballero, R; Cortes, G; Poch, A; Pretel, C; Calvino, F] Univ Politecn Cataluna, Seccio Engn Nucl, E-08028 Barcelona, Spain, Email: belen.gomez@upc.edu
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 733
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.
Title Improved Neutron Capture Cross Section Measurements with the n_TOF Total Absorption Calorimeter Type Journal Article
Year (down) 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 1813-1816
Keywords ND2010; Nuclear data; n_TOF; Background; Monte Carlo; Neutron; Time of flight; Cross section; Calorimeter; Shielding; Simulation; Total absorption; Gamma ray; Neutron capture
Abstract The n_TOF collaboration operates a Total Absorption Calorimeter (TAC) [1] for measuring neutron capture cross-sections of low-mass and/or radioactive samples. The results obtained with the TAC have led to a substantial improvement of the capture cross sections of (237)Np and (240)Pu [2]. The experience acquired during the first measurements has allowed us to optimize the performance of the TAC and to improve the capture signal to background ratio, thus opening the way to more complex and demanding measurements on rare radioactive materials. The new design has been reached by a series of detailed Monte Carlo simulations of complete experiments and dedicated test measurements. The new capture setup will be presented and the main achievements highlighted.
Address [Mendoza, E; Becares, V; Casado, A; Cano-Ott, D; Fernandez-Ordonez, M; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Vidriales, JJ] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700086 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 738
Permanent link to this record
 

 
Author ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test Type Journal Article
Year (down) 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P06001 - 35pp
Keywords Calorimeter methods; Pattern recognition, cluster finding, calibration and fitting methods; Calorimeters; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
Address [Wheeler, S] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada[Bernabeu, J; Castillo, MV; Costa, MJ; Escobar, C; Ferrer, A; Garcia, C; Gonzalez-Sevilla, S; Higon, E; Lacasta, C; Garcia, SMI; Mitsou, VA; Ruiz, A; Solans, C; Valero, A; Valls, JA] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain, Email: kjg@particle.kth.se
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294492600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 744
Permanent link to this record
 

 
Author Oliveira, C.A.B.; Sorel, M.; Martin-Albo, J.; Gomez-Cadenas, J.J.; Ferreira, A.L.; Veloso, J.F.C.A.
Title Energy resolution studies for NEXT Type Journal Article
Year (down) 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages P05007 - 13pp
Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission etc); Large detector systems for particle and astroparticle physics; Time projection chambers
Abstract This work aims to present the current state of simulations of electroluminescence (EL) produced in gas-based detectors with special interest for NEXT – Neutrino Experiment with a Xenon TPC. NEXT is a neutrinoless double beta decay experiment, thus needs outstanding energy resolution which can be achieved by using electroluminescence. The process of light production is reviewed and properties such as EL yield and associated fluctuations, excitation and electroluminescence efficiencies, and energy resolution, are calculated. An EL production region with a 5 mm width gap between two infinite parallel planes is considered, where a uniform electric field is produced. The pressure and temperature considered are 10 bar and 293 K, respectively. The results show that, even for low values of VUV photon detection efficiency, good energy resolution can be achieved: below 0.4% (FWHM) at Q(beta beta) = 2.458 MeV.
Address [Oliveira, CAB; Ferreira, AL; Veloso, JFCA] Univ Aveiro, Dept Phys, i3N, P-3810193 Aveiro, Portugal, Email: carlos.oliveira@ua.pt
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294491900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 747
Permanent link to this record