toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alencar, G.; Estrada, M.; Muniz, C.R.; Olmo, G.J. url  doi
openurl 
  Title Dymnikova GUP-corrected black holes Type Journal Article
  Year (down) 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 100 - 23pp  
  Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; GR black holes; modified gravity; quantum black holes  
  Abstract We consider the impact of Generalized Uncertainty Principle (GUP) effects on the Dymnikova regular black hole. The minimum length scale introduced by the GUP modifies the energy density associated with the gravitational source, referred to as the Dymnikova vacuum, based on its analogy with the gravitational counterpart of the Schwinger effect. We present an approximated analytical solution (together with exact numerical results for comparison) that encompasses a wide range of black hole sizes, whose properties crucially depend on the ratio between the de Sitter core radius and the GUP scale. The emergence of a wormhole inside the de Sitter core in the innermost region of the object is one of the most relevant features of this family of solutions. Our findings demonstrate that these solutions remain singularity free, confirming the robustness of the Dymnikova regular black hole under GUP corrections. Regarding energy conditions, we find that the violation of the strong, weak, and null energy conditions which is characteristic of the pure Dymnikova case does not occur at Planckian scales in the GUP corrected solution. This contrast suggests a departure from conventional expectations and highlights the influence of quantum corrections and the GUP in modifying the energy conditions near the Planck scale.  
  Address [Alencar, G.; Olmo, Gonzalo J.] Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil, Email: geova@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001121623400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5868  
Permanent link to this record
 

 
Author Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
  Year (down) 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 052 - 14pp  
  Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity  
  Abstract We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776994500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5185  
Permanent link to this record
 

 
Author Delhom, A.; Mariz, T.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J. url  doi
openurl 
  Title Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity Type Journal Article
  Year (down) 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 018 - 27pp  
  Keywords gravity; modified gravity; quantum field theory on curved space; Quantum fields in curved spacetimes  
  Abstract The metric-affine bumblebee model in the presence of fermionic matter minimally coupled to the connection is studied. We show that the model admits an Einstein frame representation in which the matter sector is described by a non-minimal Dirac action without any analogy in the literature. Such non-minimal terms involve unconventional couplings between the bumblebee and the fermion field. We then rewrite the quadratic fermion action in the Einstein frame in the basis of 16 Dirac matrices in order to identify the coefficients for Lorentz/CPT violation in all orders of the non-minimal coupling xi. The exact result for the fermionic determinant in the Einstein frame, including all orders in xi, is also provided. We demonstrate that the axial contributions are at least of second order in the perturbative expansion of xi. Furthermore, we compute the one-loop effective potential within the weak field approximation.  
  Address [Delhom, Adria] Univ Tartu, Inst Phys, Lab Theoret Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia, Email: adria.delhom@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000834157900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5314  
Permanent link to this record
 

 
Author Olmo, G.J.; Orazi, E.; Pradisi, G. url  doi
openurl 
  Title Conformal metric-affine gravities Type Journal Article
  Year (down) 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 057 - 21pp  
  Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity  
  Abstract We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R μnu R μnu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000878259300018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5405  
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Double shadows of reflection-asymmetric wormholes supported by positive energy thin-shells Type Journal Article
  Year (down) 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 066 - 26pp  
  Keywords modified gravity; Wormholes; gravity  
  Abstract We consider reflection-asymmetric thin-shell wormholes within Palatini f(R) gravity using a matching procedure of two patches of electrovacuum space-times at a hypersurface (the shell) via suitable junction conditions. The conditions for having (linearly) stable wormholes supported by positive-energy matter sources are determined. We also identify some subsets of parameters able to locate the shell radius above the event horizon (when present) but below the photon sphere (on both sides). We illustrate with an specific example that such two photon spheres allow an observer on one of the sides of the wormhole to see another (circular) shadow in addition to the one generated by its own photon sphere, which is due to the photons passing above the maximum of the effective potential on its side and bouncing back across the throat due to a higher effective potential on the other side. We finally comment on the capability of these double shadows to seek for traces of new gravitational physics beyond that described by General Relativity.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000644501000029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4823  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva